File size: 5,149 Bytes
020dd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
@File    :   app.py
@Time    :   2025/03/26 23:48:24
@Author  :   Bin-Bin Gao
@Email   :   [email protected]
@Homepage:   https://csgaobb.github.io/
@Version :   1.0
@Desc    :   MetaUAS Demo with Gradio
'''


import os
import cv2
import torch
import json
import shutil
import kornia as K
import numpy as np
import gradio as gr
from easydict import EasyDict
from argparse import ArgumentParser
from torchvision.transforms.functional import pil_to_tensor

from metauas import MetaUAS, set_random_seed, normalize, apply_ad_scoremap, safely_load_state_dict

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# configurations
random_seed = 1
encoder_name = 'efficientnet-b4' 
decoder_name = 'unet' 
encoder_depth = 5
decoder_depth = 5
num_alignment_layers = 3
alignment_type =  'sa' 
fusion_policy = 'cat'


# build model
set_random_seed(random_seed)
metauas_model = MetaUAS(encoder_name, 
                decoder_name, 
                encoder_depth, 
                decoder_depth, 
                num_alignment_layers, 
                alignment_type, 
                fusion_policy
                )   

def process_image(prompt_img, query_img, options):
    # Load the model based on selected options
    if 'model-512' in options:
        ckt_path = "weights/metauas-512.ckpt"
        model = safely_load_state_dict(metauas_model, ckt_path)
        img_size = 512
    else:
        ckt_path = 'weights/metauas-256.ckpt'
        model = safely_load_state_dict(metauas_model, ckt_path)
        img_size = 256

    model.to(device)
    model.eval()

    # Ensure image is in RGB mode
    prompt_img = prompt_img.convert('RGB')
    query_img = query_img.convert('RGB')

    query_img = pil_to_tensor(query_img).float() / 255.0
    prompt_img = pil_to_tensor(prompt_img).float() / 255.0
    
    if query_img.shape[1] != img_size:
        resize_trans = K.augmentation.Resize([img_size, img_size], return_transform=True)
        query_img = resize_trans(query_img)[0]
        prompt_img = resize_trans(prompt_img)[0]

    
    test_data = {
            "query_image": query_img.to(device),
            "prompt_image": prompt_img.to(device),
        }

    
    # Forward
    with torch.no_grad():
        predicted_masks = model(test_data) 
        anomaly_score = predicted_masks[:].max()

    # Process anomaly map
    query_img = test_data["query_image"][0] * 255
    query_img = query_img.permute(1,2,0)

    anomaly_map = predicted_masks.squeeze().detach()[:, :, None].cpu().numpy().repeat(3, 2)
    
    anomaly_map_vis = apply_ad_scoremap(query_img.cpu(), normalize(anomaly_map))


    anomaly_map = (anomaly_map * 255).astype(np.uint8)
    anomaly_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
    anomaly_map = cv2.cvtColor(anomaly_map, cv2.COLOR_BGR2RGB)
    
    return anomaly_map_vis, anomaly_map, f'{anomaly_score:.3f}'

# Define examples
examples = [
    ["images/134.png", "images/000.png", "model-256"],
    ["images/036.png", "images/024.png", "model-256"],
    ["images/178.png", "images/003.png", "model-256"],
]

# Gradio interface layout
with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center" style='margin-top: 30px;'>MetaUAS: Universal Anomaly Segmentation</h1>""")
    gr.HTML("""<h1 align="center" style="font-size: 15px; "style='margin-top: 40px;'>just given ONE normal image prompt</h1>""")
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                prompt_image = gr.Image(type="pil", label="Prompt Image")
                query_image = gr.Image(type="pil", label="Query Image")
            model_selector = gr.Radio(["model-256", "model-512"], label="Pre-models")
        
        with gr.Column():
            with gr.Row():
                 anomaly_map_vis = gr.Image(type="pil", label="Anomaly Results")
                 anomaly_map = gr.Image(type="pil", label="Anomaly Maps")
            anomaly_score = gr.Textbox(label="Anomaly Score")

    with gr.Row():
        submit_button = gr.Button("Submit", elem_id="submit-button")
        clear_button = gr.Button("Clear")

    # Set up the event handlers
    submit_button.click(process_image, inputs=[prompt_image, query_image, model_selector], outputs=[anomaly_map_vis, anomaly_map, anomaly_score])
    clear_button.click(lambda: (None, None, None), outputs=[anomaly_map_vis, anomaly_map, anomaly_score])

    # Add examples directly to the Blocks interface
    gr.Examples(examples, inputs=[prompt_image, query_image, model_selector])

# Add custom CSS to control the output image size and button styles
demo.css = """
#submit-button {
    color: red !important;  /* Font color */
    background-color: orange !important;  /* Background color */
    border: none !important;  /* Remove border */
    padding: 10px 20px !important;  /* Add padding */
    border-radius: 5px !important;  /* Rounded corners */
    font-size: 16px !important;  /* Font size */
    cursor: pointer !important;  /* Pointer cursor on hover */
}

#submit-button:hover {
    background-color: darkorange !important;  /* Darker orange on hover */
}
"""

# Launch the demo
demo.launch()