Spaces:
Sleeping
Sleeping
Rahul-Crudcook
commited on
Upload 3 files
Browse files- AAPL_dataset_copied.csv +0 -0
- app.py +155 -0
- requirements.txt +6 -0
AAPL_dataset_copied.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.preprocessing import MinMaxScaler
|
6 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
7 |
+
from tensorflow.keras.models import Sequential
|
8 |
+
from tensorflow.keras.layers import Dense, LSTM, Dropout
|
9 |
+
from datetime import timedelta
|
10 |
+
|
11 |
+
# Title and description
|
12 |
+
st.title("Stock Price Prediction with LSTM")
|
13 |
+
st.write("This application uses LSTM (Long Short-Term Memory) neural networks to predict stock prices.")
|
14 |
+
|
15 |
+
# Load the data directly (replace 'AAPL_dataset_copied.csv' with your actual file path)
|
16 |
+
data = pd.read_csv('AAPL_dataset_copied.csv')
|
17 |
+
|
18 |
+
# Convert 'date' column to datetime and set as index
|
19 |
+
data['date'] = pd.to_datetime(data['date'])
|
20 |
+
data.set_index('date', inplace=True)
|
21 |
+
|
22 |
+
# Select only the 'Close' column
|
23 |
+
data = data[['close']]
|
24 |
+
|
25 |
+
# Show the first few rows of the dataset
|
26 |
+
st.subheader("Dataset Preview")
|
27 |
+
st.write(data.head())
|
28 |
+
|
29 |
+
# Normalize the data for faster convergence
|
30 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
31 |
+
data['close_scaled'] = scaler.fit_transform(data[['close']])
|
32 |
+
|
33 |
+
# Split data into training (70%), validation (15%), and testing (15%) sets
|
34 |
+
train_size = int(len(data) * 0.7)
|
35 |
+
val_size = int(len(data) * 0.15)
|
36 |
+
train_data = data['close_scaled'][:train_size].values.reshape(-1, 1)
|
37 |
+
val_data = data['close_scaled'][train_size:train_size + val_size].values.reshape(-1, 1)
|
38 |
+
test_data = data['close_scaled'][train_size + val_size:].values.reshape(-1, 1)
|
39 |
+
|
40 |
+
# Function to create sequences for LSTM
|
41 |
+
def create_sequences(dataset, time_step=60):
|
42 |
+
X, Y = [], []
|
43 |
+
for i in range(len(dataset) - time_step):
|
44 |
+
X.append(dataset[i:(i + time_step), 0])
|
45 |
+
Y.append(dataset[i + time_step, 0])
|
46 |
+
return np.array(X), np.array(Y)
|
47 |
+
|
48 |
+
# Define time step (e.g., 60 days)
|
49 |
+
time_step = 60
|
50 |
+
X_train, y_train = create_sequences(train_data, time_step)
|
51 |
+
X_val, y_val = create_sequences(val_data, time_step)
|
52 |
+
X_test, y_test = create_sequences(test_data, time_step)
|
53 |
+
|
54 |
+
# Reshape input to be [samples, time steps, features] for LSTM
|
55 |
+
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
|
56 |
+
X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
|
57 |
+
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
|
58 |
+
|
59 |
+
# Build the LSTM model with Dropout for regularization
|
60 |
+
model = Sequential([
|
61 |
+
LSTM(100, return_sequences=True, input_shape=(X_train.shape[1], 1)),
|
62 |
+
Dropout(0.2),
|
63 |
+
LSTM(50, return_sequences=True),
|
64 |
+
Dropout(0.2),
|
65 |
+
LSTM(50, return_sequences=False),
|
66 |
+
Dropout(0.2),
|
67 |
+
Dense(25),
|
68 |
+
Dense(1)
|
69 |
+
])
|
70 |
+
|
71 |
+
# Compile the model with Adam optimizer and mean squared error loss
|
72 |
+
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mean_absolute_error'])
|
73 |
+
|
74 |
+
# Train the model without EarlyStopping
|
75 |
+
st.write("Training the LSTM model...")
|
76 |
+
history = model.fit(X_train, y_train, validation_data=(X_val, y_val),
|
77 |
+
epochs=100, batch_size=64, verbose=1)
|
78 |
+
|
79 |
+
# Evaluate on the test data
|
80 |
+
test_loss, test_mae = model.evaluate(X_test, y_test, verbose=0)
|
81 |
+
|
82 |
+
# Make predictions on the test data
|
83 |
+
train_predict = model.predict(X_train)
|
84 |
+
val_predict = model.predict(X_val)
|
85 |
+
test_predict = model.predict(X_test)
|
86 |
+
|
87 |
+
# Inverse transform the predictions and actual values to original scale
|
88 |
+
train_predict = scaler.inverse_transform(train_predict)
|
89 |
+
val_predict = scaler.inverse_transform(val_predict)
|
90 |
+
test_predict = scaler.inverse_transform(test_predict)
|
91 |
+
y_train = scaler.inverse_transform([y_train])
|
92 |
+
y_val = scaler.inverse_transform([y_val])
|
93 |
+
y_test = scaler.inverse_transform([y_test])
|
94 |
+
|
95 |
+
# Calculate evaluation metrics
|
96 |
+
train_rmse = np.sqrt(mean_squared_error(y_train[0], train_predict[:,0]))
|
97 |
+
val_rmse = np.sqrt(mean_squared_error(y_val[0], val_predict[:,0]))
|
98 |
+
test_rmse = np.sqrt(mean_squared_error(y_test[0], test_predict[:,0]))
|
99 |
+
|
100 |
+
train_mae = mean_absolute_error(y_train[0], train_predict[:,0])
|
101 |
+
val_mae = mean_absolute_error(y_val[0], val_predict[:,0])
|
102 |
+
test_mae = mean_absolute_error(y_test[0], test_predict[:,0])
|
103 |
+
|
104 |
+
# Mean Absolute Percentage Error (MAPE) as accuracy
|
105 |
+
mape = np.mean(np.abs((y_test[0] - test_predict[:, 0]) / y_test[0])) * 100
|
106 |
+
accuracy = 100 - mape
|
107 |
+
|
108 |
+
st.write(f"LSTM Model - Train RMSE: {train_rmse:.2f}, Train MAE: {train_mae:.2f}")
|
109 |
+
st.write(f"LSTM Model - Validation RMSE: {val_rmse:.2f}, Validation MAE: {val_mae:.2f}")
|
110 |
+
st.write(f"LSTM Model - Test RMSE: {test_rmse:.2f}, Test MAE: {test_mae:.2f}")
|
111 |
+
st.write(f"LSTM Model - Test Accuracy: {accuracy:.2f}%")
|
112 |
+
|
113 |
+
# Plot the results
|
114 |
+
st.subheader("Prediction Results")
|
115 |
+
plt.figure(figsize=(14,6))
|
116 |
+
plt.plot(data.index[:train_size], scaler.inverse_transform(train_data), label='Training Data')
|
117 |
+
plt.plot(data.index[train_size + time_step:train_size + time_step + len(val_predict)], val_predict, label='Validation Predictions')
|
118 |
+
plt.plot(data.index[train_size + val_size + time_step:], test_predict, label='Test Predictions')
|
119 |
+
plt.plot(data.index[train_size + val_size + time_step:], y_test[0], label='Actual Test Data')
|
120 |
+
plt.xlabel('Date')
|
121 |
+
plt.ylabel('Stock Price')
|
122 |
+
plt.legend(['Training Data', 'Validation Predictions', 'Test Predictions', 'Actual Test Data'], loc='upper left')
|
123 |
+
st.pyplot(plt)
|
124 |
+
|
125 |
+
# User-defined future prediction days
|
126 |
+
num_days_to_predict = st.slider("Select the number of days to predict into the future", min_value=1, max_value=30, value=10)
|
127 |
+
|
128 |
+
# Predict future prices for the next 'num_days_to_predict' days
|
129 |
+
temp_input = np.array(test_data[-time_step:]).reshape(-1).tolist()
|
130 |
+
lst_output = []
|
131 |
+
|
132 |
+
for i in range(num_days_to_predict):
|
133 |
+
if len(temp_input) > time_step:
|
134 |
+
x_input = np.array(temp_input[-time_step:])
|
135 |
+
x_input = x_input.reshape((1, time_step, 1))
|
136 |
+
yhat = model.predict(x_input, verbose=0)
|
137 |
+
temp_input.append(yhat[0][0])
|
138 |
+
lst_output.append(yhat[0][0])
|
139 |
+
else:
|
140 |
+
x_input = np.array(temp_input).reshape((1, time_step, 1))
|
141 |
+
yhat = model.predict(x_input, verbose=0)
|
142 |
+
temp_input.append(yhat[0][0])
|
143 |
+
lst_output.append(yhat[0][0])
|
144 |
+
|
145 |
+
# Inverse transform future predictions to the original scale
|
146 |
+
future_predictions = scaler.inverse_transform(np.array(lst_output).reshape(-1, 1))
|
147 |
+
|
148 |
+
# Generate dates for future predictions
|
149 |
+
last_date = data.index[-1]
|
150 |
+
future_dates = [last_date + timedelta(days=i) for i in range(1, num_days_to_predict + 1)]
|
151 |
+
|
152 |
+
# Display future predictions with dates
|
153 |
+
st.subheader(f"Future Predictions for the next {num_days_to_predict} days:")
|
154 |
+
future_df = pd.DataFrame({'Date': future_dates, 'Predicted Price (LSTM)': future_predictions.flatten()})
|
155 |
+
st.write(future_df)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
scikit-learn
|
6 |
+
tensorflow
|