File size: 4,886 Bytes
23d7fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, r2_score
from tensorflow.keras.models import load_model
import streamlit as st

# Step 1: Load the datasets
def load_data():
    options_path = 'BANKNIFTY_Option.csv'
    futures_path = 'BANKNIFTY_Future.csv'
    options_data = pd.read_csv(options_path)
    futures_data = pd.read_csv(futures_path)
    return options_data, futures_data

# Step 2: Preprocessing and Merging
def preprocess_data(options_data, futures_data):
    options_data['lasttradetime'] = pd.to_datetime(options_data['lasttradetime'], unit='s')
    futures_data['lasttradetime'] = pd.to_datetime(futures_data['lasttradetime'], unit='s')

    # Merge datasets on lasttradetime
    merged_data = pd.merge(options_data, futures_data, on='lasttradetime', how='inner', suffixes=('_options', '_futures'))

    # Create new features
    merged_data['price_diff'] = merged_data['close_options'] - merged_data['close_futures']
    merged_data['volume_ratio'] = merged_data['tradedqty'] / merged_data['volume']
    merged_data['openinterest_diff'] = merged_data['openinterest_options'] - merged_data['openinterest_futures']

    # Drop unnecessary columns
    merged_data = merged_data[['lasttradetime', 'close_options', 'price_diff', 'volume_ratio', 'openinterest_diff']]
    merged_data = merged_data.set_index('lasttradetime')

    return merged_data

# Step 3: Load Pre-Trained Model and Scaler
def load_trained_model_and_scaler():
    model = load_model('banknifty_model.h5')
    scaler = np.load('scaler.npy', allow_pickle=True).item()
    return model, scaler

# Step 4: Predict Future Prices
def predict_future_prices(model, scaler, X, last_date, steps=5):
    last_sequence = X[-1:, :, :]
    future_forecast = []
    future_dates = pd.date_range(start=last_date, periods=steps + 1, freq='5min')[1:]

    for _ in range(steps):
        next_pred = model.predict(last_sequence)[0, 0]
        future_forecast.append(next_pred)
        next_input = np.concatenate([last_sequence[:, 1:, :], np.array([[[next_pred, 0, 0, 0]]])], axis=1)
        last_sequence = next_input

    future_forecast_rescaled = scaler.inverse_transform(
        np.hstack((np.array(future_forecast).reshape(-1, 1), np.zeros((steps, X.shape[2] - 1))))
    )[:, 0]
    return future_forecast_rescaled, future_dates

# Step 5: Evaluate Model
def evaluate_model(model, X_test, y_test, scaler):
    y_pred = model.predict(X_test)
    y_pred_rescaled = scaler.inverse_transform(
        np.hstack((y_pred, np.zeros((y_pred.shape[0], X_test.shape[2] - 1))))
    )[:, 0]
    y_test_rescaled = scaler.inverse_transform(
        np.hstack((y_test.reshape(-1, 1), np.zeros((y_test.shape[0], X_test.shape[2] - 1))))
    )[:, 0]
    
    mse = mean_squared_error(y_test_rescaled, y_pred_rescaled)
    r2 = r2_score(y_test_rescaled, y_pred_rescaled)
    
    # Calculate accuracy
    accuracy = 1 - (np.abs(y_test_rescaled - y_pred_rescaled).mean() / y_test_rescaled.mean())
    return mse, r2, accuracy

# Streamlit App
def main():
    st.title("Bank Nifty Options & Futures Forecasting")

    # Load and preprocess data
    options_data, futures_data = load_data()
    merged_data = preprocess_data(options_data, futures_data)

    st.write("### Merged Dataset")
    st.dataframe(merged_data.head(10))

    # Feature Scaling
    model, scaler = load_trained_model_and_scaler()
    scaled_data = scaler.transform(merged_data)

    # Create Sequences
    time_steps = 72
    X = np.array([scaled_data[i:i + time_steps] for i in range(len(scaled_data) - time_steps)])
    y = scaled_data[time_steps:, 0]

    # Evaluate Model
    mse, r2, accuracy = evaluate_model(model, X, y, scaler)
    st.write(f"### Model Evaluation")
    st.write(f"Mean Squared Error (MSE): {mse:.2f}")
    st.write(f"R² Score: {r2:.2f}")
    st.write(f"Accuracy: {accuracy * 100:.2f}%")

    # Predict Future Prices
    st.write("### Predicting Future Prices...")
    last_date = merged_data.index[-1]
    steps = st.slider("Select Number of Future Steps to Predict", min_value=1, max_value=20, value=5)
    future_prices, future_dates = predict_future_prices(model, scaler, X, last_date, steps)

    st.write("### Predicted Future Prices")
    for date, price in zip(future_dates, future_prices):
        st.write(f"{date}: {price:.2f}")

    # Plot Results
    st.write("### Predicted Prices Plot")
    fig, ax = plt.subplots(figsize=(12, 6))
    ax.plot(future_dates, future_prices, marker='o', label="Predicted Prices")
    ax.set_title("Future Predicted Prices")
    ax.set_xlabel("Date")
    ax.set_ylabel("Price")
    ax.legend()
    st.pyplot(fig)

if __name__ == "__main__":
    main()