File size: 5,321 Bytes
1243ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import tensorflow as tf
import coremltools as ct
import numpy as np
import PIL
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
import os
import math

# Helper class to extract features from one model, and then feed those features into a classification head
# Because coremltools will only perform inference on OSX, an alternative tensorflow inference pipeline uses
# a tensorflow feature extractor and feeds the features into a dynamically created keras model based on the coreml classification head.
class CoreMLPipeline:    
    def __init__(self, config, auth_key, use_tf):
        self.config = config
        self.use_tf = use_tf
        if use_tf:
            extractor_path = snapshot_download(repo_id=config["tf_extractor_repoid"], use_auth_token  = auth_key)
        else:
            extractor_path = hf_hub_download(repo_id=config["coreml_extractor_repoid"],
                                             filename=config["coreml_extractor_path"], use_auth_token  = auth_key)

        classifier_path = hf_hub_download(repo_id=config["coreml_classifier_repoid"], filename=config["coreml_classifier_path"],
                                          use_auth_token = auth_key)

        print(f"Loading extractor...{extractor_path}")
        if use_tf:
            self.extractor = tf.saved_model.load(os.path.join(extractor_path, config["tf_extractor_path"]))
        else:
            self.extractor = ct.models.MLModel(extractor_path)

        print(f"Loading classifier...{classifier_path}")
        self.classifier = ct.models.MLModel(classifier_path)

        if use_tf:
            self.make_keras_model()

    #unquantizes values if quantized
    def realize_weights(self, nnWeights, width):
        if nnWeights.quantization == 0:
            weights = np.array(nnWeights.floatValue)
        elif nnWeights.quantization.numberOfBits == 8:
            scales = np.array(nnWeights.quantization.linearQuantization.scale)
            biases = np.array(nnWeights.quantization.linearQuantization.bias)
            quantized = nnWeights.rawValue
            classes = len(scales)
            weights = []
            for i in range(0,classes):
                scale = scales[i]
                bias = biases[i]
                for j in range(0,width):
                    weights.append(quantized[i*width + j] * scale + bias)
            weights = np.array(weights)
        else:
            print("Unsupported quantization")
            weights = None
        return weights

    #Only MacOS can run inference on CoreML models. Convert it to tensorflow to match the tf feature extractor            
    def make_keras_model(self):
        spec = self.classifier.get_spec()
        nnClassifier = spec.neuralNetworkClassifier
        labels = nnClassifier.stringClassLabels.vector
        input = tf.keras.Input(shape = (1280))
        if "activation" in self.config:
            activation = self.config['activation']
        else:
            activation = "sigmoid" if len(labels) == 1 else "softmax"
        x = tf.keras.layers.Dense(len(labels), activation = activation)(input)
        model = tf.keras.Model(input,x, trainable = False)
        weights = self.realize_weights(nnClassifier.layers[0].innerProduct.weights,1280)  
        weights = weights.reshape((len(labels),1280))
        weights = weights.T

        bias = self.realize_weights(nnClassifier.layers[0].innerProduct.bias, len(labels))
        bias.reshape(1,len(labels))
        model.set_weights([weights,bias])    
        self.tf_model = model
        self.labels = labels
    import math
    
    def softmax_dict(self, input_dict):
        """
        Compute the softmax of a dictionary of values.
        
        Args:
        input_dict (dict): A dictionary with numerical values.
        
        Returns:
        dict: A dictionary with the same keys where the values are the softmax of the input values.
        """
        # Compute the exponential of all the values
        exp_values = {k: math.exp(v) for k, v in input_dict.items()}
        
        # Compute the sum of all exponential values
        sum_exp_values = sum(exp_values.values())
        
        # Compute the softmax by dividing each exponential value by the sum of all exponential values
        softmax_values = {k: v / sum_exp_values for k, v in exp_values.items()}
        
        return softmax_values
    

    
    def classify(self,resized):
        if self.use_tf:
            image = tf.image.convert_image_dtype(resized, tf.float32)
            image = tf.expand_dims(image, 0)
            features = self.extractor.signatures['serving_default'](image)
            input = {"input_1":features["output_1"]}
            output = self.tf_model.predict(input)
            results = {}
            for i,label in enumerate(self.labels):
                results[label] = output[0][i]
        else:
            features = self.extractor.predict({"image":resized})
            features = features["Identity"]
            output = self.classifier.predict({"features":features[0]})
            results = output["Identity"]
            if "activation" in self.config and self.config["activation"] == "softmax":
                results = self.softmax_dict(results)
                
        return results