Spaces:
Runtime error
Runtime error
Synthesize nl
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -14,7 +16,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
|
|
|
|
|
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -25,9 +30,10 @@ def translate(audio):
|
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
|
|
|
|
31 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
32 |
return speech.cpu()
|
33 |
|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
from transformers import VitsModel, VitsTokenizer
|
8 |
+
|
9 |
|
10 |
|
11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
# load text-to-speech checkpoint and speaker embeddings
|
17 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
18 |
|
19 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
20 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-nl")
|
21 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nl")
|
22 |
+
|
23 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
24 |
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
30 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
31 |
return outputs["text"]
|
32 |
|
|
|
33 |
def synthesise(text):
|
34 |
+
inputs = tokenizer(text, return_tensors="pt")
|
35 |
+
input_ids = inputs["input_ids"]
|
36 |
+
# inputs = processor(text=text, return_tensors="pt")
|
37 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
38 |
return speech.cpu()
|
39 |
|