crabz commited on
Commit
4965488
·
1 Parent(s): 251f91a

update README

Browse files
Files changed (1) hide show
  1. README.md +85 -8
README.md CHANGED
@@ -1,12 +1,89 @@
1
  ---
2
- title: Slovakbert Upos
3
- emoji: 🌍
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: false
9
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
 
 
 
 
2
  license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - universal_dependencies
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: slovakbert-upos
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: universal_dependencies sk_snk
20
+ type: universal_dependencies
21
+ args: sk_snk
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9802269601100413
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9825922095829025
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9814081597521088
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9830562916566289
35
  ---
36
 
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # slovakbert-upos
41
+
42
+ This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the universal_dependencies sk_snk dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0936
45
+ - Precision: 0.9802
46
+ - Recall: 0.9826
47
+ - F1: 0.9814
48
+ - Accuracy: 0.9831
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 5e-05
68
+ - train_batch_size: 32
69
+ - eval_batch_size: 32
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3.0
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 1.0 | 266 | 0.1279 | 0.9752 | 0.9760 | 0.9756 | 0.9766 |
80
+ | 0.2077 | 2.0 | 532 | 0.0994 | 0.9779 | 0.9815 | 0.9797 | 0.9815 |
81
+ | 0.2077 | 3.0 | 798 | 0.0936 | 0.9802 | 0.9826 | 0.9814 | 0.9831 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.17.0.dev0
87
+ - Pytorch 1.10.0
88
+ - Datasets 1.16.1
89
+ - Tokenizers 0.11.0