File size: 28,781 Bytes
d5dce88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
from __future__ import annotations

import collections
import functools
import logging
import math
import os
import threading
import warnings
from concurrent.futures import Future, ThreadPoolExecutor
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    ClassVar,
    Generic,
    NamedTuple,
    OrderedDict,
    TypeVar,
)

if TYPE_CHECKING:
    import mmap

    from typing_extensions import ParamSpec

    P = ParamSpec("P")
else:
    P = TypeVar("P")

T = TypeVar("T")


logger = logging.getLogger("fsspec")

Fetcher = Callable[[int, int], bytes]  # Maps (start, end) to bytes


class BaseCache:
    """Pass-though cache: doesn't keep anything, calls every time

    Acts as base class for other cachers

    Parameters
    ----------
    blocksize: int
        How far to read ahead in numbers of bytes
    fetcher: func
        Function of the form f(start, end) which gets bytes from remote as
        specified
    size: int
        How big this file is
    """

    name: ClassVar[str] = "none"

    def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
        self.blocksize = blocksize
        self.fetcher = fetcher
        self.size = size

    def _fetch(self, start: int | None, stop: int | None) -> bytes:
        if start is None:
            start = 0
        if stop is None:
            stop = self.size
        if start >= self.size or start >= stop:
            return b""
        return self.fetcher(start, stop)


class MMapCache(BaseCache):
    """memory-mapped sparse file cache

    Opens temporary file, which is filled blocks-wise when data is requested.
    Ensure there is enough disc space in the temporary location.

    This cache method might only work on posix
    """

    name = "mmap"

    def __init__(
        self,
        blocksize: int,
        fetcher: Fetcher,
        size: int,
        location: str | None = None,
        blocks: set[int] | None = None,
    ) -> None:
        super().__init__(blocksize, fetcher, size)
        self.blocks = set() if blocks is None else blocks
        self.location = location
        self.cache = self._makefile()

    def _makefile(self) -> mmap.mmap | bytearray:
        import mmap
        import tempfile

        if self.size == 0:
            return bytearray()

        # posix version
        if self.location is None or not os.path.exists(self.location):
            if self.location is None:
                fd = tempfile.TemporaryFile()
                self.blocks = set()
            else:
                fd = open(self.location, "wb+")
            fd.seek(self.size - 1)
            fd.write(b"1")
            fd.flush()
        else:
            fd = open(self.location, "rb+")

        return mmap.mmap(fd.fileno(), self.size)

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        logger.debug(f"MMap cache fetching {start}-{end}")
        if start is None:
            start = 0
        if end is None:
            end = self.size
        if start >= self.size or start >= end:
            return b""
        start_block = start // self.blocksize
        end_block = end // self.blocksize
        need = [i for i in range(start_block, end_block + 1) if i not in self.blocks]
        while need:
            # TODO: not a for loop so we can consolidate blocks later to
            # make fewer fetch calls; this could be parallel
            i = need.pop(0)
            sstart = i * self.blocksize
            send = min(sstart + self.blocksize, self.size)
            logger.debug(f"MMap get block #{i} ({sstart}-{send}")
            self.cache[sstart:send] = self.fetcher(sstart, send)
            self.blocks.add(i)

        return self.cache[start:end]

    def __getstate__(self) -> dict[str, Any]:
        state = self.__dict__.copy()
        # Remove the unpicklable entries.
        del state["cache"]
        return state

    def __setstate__(self, state: dict[str, Any]) -> None:
        # Restore instance attributes
        self.__dict__.update(state)
        self.cache = self._makefile()


class ReadAheadCache(BaseCache):
    """Cache which reads only when we get beyond a block of data

    This is a much simpler version of BytesCache, and does not attempt to
    fill holes in the cache or keep fragments alive. It is best suited to
    many small reads in a sequential order (e.g., reading lines from a file).
    """

    name = "readahead"

    def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
        super().__init__(blocksize, fetcher, size)
        self.cache = b""
        self.start = 0
        self.end = 0

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        if start is None:
            start = 0
        if end is None or end > self.size:
            end = self.size
        if start >= self.size or start >= end:
            return b""
        l = end - start
        if start >= self.start and end <= self.end:
            # cache hit
            return self.cache[start - self.start : end - self.start]
        elif self.start <= start < self.end:
            # partial hit
            part = self.cache[start - self.start :]
            l -= len(part)
            start = self.end
        else:
            # miss
            part = b""
        end = min(self.size, end + self.blocksize)
        self.cache = self.fetcher(start, end)  # new block replaces old
        self.start = start
        self.end = self.start + len(self.cache)
        return part + self.cache[:l]


class FirstChunkCache(BaseCache):
    """Caches the first block of a file only

    This may be useful for file types where the metadata is stored in the header,
    but is randomly accessed.
    """

    name = "first"

    def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
        super().__init__(blocksize, fetcher, size)
        self.cache: bytes | None = None

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        start = start or 0
        end = end or self.size
        if start < self.blocksize:
            if self.cache is None:
                if end > self.blocksize:
                    data = self.fetcher(0, end)
                    self.cache = data[: self.blocksize]
                    return data[start:]
                self.cache = self.fetcher(0, self.blocksize)
            part = self.cache[start:end]
            if end > self.blocksize:
                part += self.fetcher(self.blocksize, end)
            return part
        else:
            return self.fetcher(start, end)


class BlockCache(BaseCache):
    """
    Cache holding memory as a set of blocks.

    Requests are only ever made ``blocksize`` at a time, and are
    stored in an LRU cache. The least recently accessed block is
    discarded when more than ``maxblocks`` are stored.

    Parameters
    ----------
    blocksize : int
        The number of bytes to store in each block.
        Requests are only ever made for ``blocksize``, so this
        should balance the overhead of making a request against
        the granularity of the blocks.
    fetcher : Callable
    size : int
        The total size of the file being cached.
    maxblocks : int
        The maximum number of blocks to cache for. The maximum memory
        use for this cache is then ``blocksize * maxblocks``.
    """

    name = "blockcache"

    def __init__(
        self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32
    ) -> None:
        super().__init__(blocksize, fetcher, size)
        self.nblocks = math.ceil(size / blocksize)
        self.maxblocks = maxblocks
        self._fetch_block_cached = functools.lru_cache(maxblocks)(self._fetch_block)

    def __repr__(self) -> str:
        return (
            f"<BlockCache blocksize={self.blocksize}, "
            f"size={self.size}, nblocks={self.nblocks}>"
        )

    def cache_info(self):
        """
        The statistics on the block cache.

        Returns
        -------
        NamedTuple
            Returned directly from the LRU Cache used internally.
        """
        return self._fetch_block_cached.cache_info()

    def __getstate__(self) -> dict[str, Any]:
        state = self.__dict__
        del state["_fetch_block_cached"]
        return state

    def __setstate__(self, state: dict[str, Any]) -> None:
        self.__dict__.update(state)
        self._fetch_block_cached = functools.lru_cache(state["maxblocks"])(
            self._fetch_block
        )

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        if start is None:
            start = 0
        if end is None:
            end = self.size
        if start >= self.size or start >= end:
            return b""

        # byte position -> block numbers
        start_block_number = start // self.blocksize
        end_block_number = end // self.blocksize

        # these are cached, so safe to do multiple calls for the same start and end.
        for block_number in range(start_block_number, end_block_number + 1):
            self._fetch_block_cached(block_number)

        return self._read_cache(
            start,
            end,
            start_block_number=start_block_number,
            end_block_number=end_block_number,
        )

    def _fetch_block(self, block_number: int) -> bytes:
        """
        Fetch the block of data for `block_number`.
        """
        if block_number > self.nblocks:
            raise ValueError(
                f"'block_number={block_number}' is greater than "
                f"the number of blocks ({self.nblocks})"
            )

        start = block_number * self.blocksize
        end = start + self.blocksize
        logger.info("BlockCache fetching block %d", block_number)
        block_contents = super()._fetch(start, end)
        return block_contents

    def _read_cache(
        self, start: int, end: int, start_block_number: int, end_block_number: int
    ) -> bytes:
        """
        Read from our block cache.

        Parameters
        ----------
        start, end : int
            The start and end byte positions.
        start_block_number, end_block_number : int
            The start and end block numbers.
        """
        start_pos = start % self.blocksize
        end_pos = end % self.blocksize

        if start_block_number == end_block_number:
            block: bytes = self._fetch_block_cached(start_block_number)
            return block[start_pos:end_pos]

        else:
            # read from the initial
            out = []
            out.append(self._fetch_block_cached(start_block_number)[start_pos:])

            # intermediate blocks
            # Note: it'd be nice to combine these into one big request. However
            # that doesn't play nicely with our LRU cache.
            for block_number in range(start_block_number + 1, end_block_number):
                out.append(self._fetch_block_cached(block_number))

            # final block
            out.append(self._fetch_block_cached(end_block_number)[:end_pos])

            return b"".join(out)


class BytesCache(BaseCache):
    """Cache which holds data in a in-memory bytes object

    Implements read-ahead by the block size, for semi-random reads progressing
    through the file.

    Parameters
    ----------
    trim: bool
        As we read more data, whether to discard the start of the buffer when
        we are more than a blocksize ahead of it.
    """

    name: ClassVar[str] = "bytes"

    def __init__(
        self, blocksize: int, fetcher: Fetcher, size: int, trim: bool = True
    ) -> None:
        super().__init__(blocksize, fetcher, size)
        self.cache = b""
        self.start: int | None = None
        self.end: int | None = None
        self.trim = trim

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        # TODO: only set start/end after fetch, in case it fails?
        # is this where retry logic might go?
        if start is None:
            start = 0
        if end is None:
            end = self.size
        if start >= self.size or start >= end:
            return b""
        if (
            self.start is not None
            and start >= self.start
            and self.end is not None
            and end < self.end
        ):
            # cache hit: we have all the required data
            offset = start - self.start
            return self.cache[offset : offset + end - start]

        if self.blocksize:
            bend = min(self.size, end + self.blocksize)
        else:
            bend = end

        if bend == start or start > self.size:
            return b""

        if (self.start is None or start < self.start) and (
            self.end is None or end > self.end
        ):
            # First read, or extending both before and after
            self.cache = self.fetcher(start, bend)
            self.start = start
        else:
            assert self.start is not None
            assert self.end is not None

            if start < self.start:
                if self.end is None or self.end - end > self.blocksize:
                    self.cache = self.fetcher(start, bend)
                    self.start = start
                else:
                    new = self.fetcher(start, self.start)
                    self.start = start
                    self.cache = new + self.cache
            elif self.end is not None and bend > self.end:
                if self.end > self.size:
                    pass
                elif end - self.end > self.blocksize:
                    self.cache = self.fetcher(start, bend)
                    self.start = start
                else:
                    new = self.fetcher(self.end, bend)
                    self.cache = self.cache + new

        self.end = self.start + len(self.cache)
        offset = start - self.start
        out = self.cache[offset : offset + end - start]
        if self.trim:
            num = (self.end - self.start) // (self.blocksize + 1)
            if num > 1:
                self.start += self.blocksize * num
                self.cache = self.cache[self.blocksize * num :]
        return out

    def __len__(self) -> int:
        return len(self.cache)


class AllBytes(BaseCache):
    """Cache entire contents of the file"""

    name: ClassVar[str] = "all"

    def __init__(
        self,
        blocksize: int | None = None,
        fetcher: Fetcher | None = None,
        size: int | None = None,
        data: bytes | None = None,
    ) -> None:
        super().__init__(blocksize, fetcher, size)  # type: ignore[arg-type]
        if data is None:
            data = self.fetcher(0, self.size)
        self.data = data

    def _fetch(self, start: int | None, stop: int | None) -> bytes:
        return self.data[start:stop]


class KnownPartsOfAFile(BaseCache):
    """
    Cache holding known file parts.

    Parameters
    ----------
    blocksize: int
        How far to read ahead in numbers of bytes
    fetcher: func
        Function of the form f(start, end) which gets bytes from remote as
        specified
    size: int
        How big this file is
    data: dict
        A dictionary mapping explicit `(start, stop)` file-offset tuples
        with known bytes.
    strict: bool, default True
        Whether to fetch reads that go beyond a known byte-range boundary.
        If `False`, any read that ends outside a known part will be zero
        padded. Note that zero padding will not be used for reads that
        begin outside a known byte-range.
    """

    name: ClassVar[str] = "parts"

    def __init__(
        self,
        blocksize: int,
        fetcher: Fetcher,
        size: int,
        data: dict[tuple[int, int], bytes] = {},
        strict: bool = True,
        **_: Any,
    ):
        super().__init__(blocksize, fetcher, size)
        self.strict = strict

        # simple consolidation of contiguous blocks
        if data:
            old_offsets = sorted(data.keys())
            offsets = [old_offsets[0]]
            blocks = [data.pop(old_offsets[0])]
            for start, stop in old_offsets[1:]:
                start0, stop0 = offsets[-1]
                if start == stop0:
                    offsets[-1] = (start0, stop)
                    blocks[-1] += data.pop((start, stop))
                else:
                    offsets.append((start, stop))
                    blocks.append(data.pop((start, stop)))

            self.data = dict(zip(offsets, blocks))
        else:
            self.data = data

    def _fetch(self, start: int | None, stop: int | None) -> bytes:
        if start is None:
            start = 0
        if stop is None:
            stop = self.size

        out = b""
        for (loc0, loc1), data in self.data.items():
            # If self.strict=False, use zero-padded data
            # for reads beyond the end of a "known" buffer
            if loc0 <= start < loc1:
                off = start - loc0
                out = data[off : off + stop - start]
                if not self.strict or loc0 <= stop <= loc1:
                    # The request is within a known range, or
                    # it begins within a known range, and we
                    # are allowed to pad reads beyond the
                    # buffer with zero
                    out += b"\x00" * (stop - start - len(out))
                    return out
                else:
                    # The request ends outside a known range,
                    # and we are being "strict" about reads
                    # beyond the buffer
                    start = loc1
                    break

        # We only get here if there is a request outside the
        # known parts of the file. In an ideal world, this
        # should never happen
        if self.fetcher is None:
            # We cannot fetch the data, so raise an error
            raise ValueError(f"Read is outside the known file parts: {(start, stop)}. ")
        # We can fetch the data, but should warn the user
        # that this may be slow
        warnings.warn(
            f"Read is outside the known file parts: {(start, stop)}. "
            f"IO/caching performance may be poor!"
        )
        logger.debug(f"KnownPartsOfAFile cache fetching {start}-{stop}")
        return out + super()._fetch(start, stop)


class UpdatableLRU(Generic[P, T]):
    """
    Custom implementation of LRU cache that allows updating keys

    Used by BackgroudBlockCache
    """

    class CacheInfo(NamedTuple):
        hits: int
        misses: int
        maxsize: int
        currsize: int

    def __init__(self, func: Callable[P, T], max_size: int = 128) -> None:
        self._cache: OrderedDict[Any, T] = collections.OrderedDict()
        self._func = func
        self._max_size = max_size
        self._hits = 0
        self._misses = 0
        self._lock = threading.Lock()

    def __call__(self, *args: P.args, **kwargs: P.kwargs) -> T:
        if kwargs:
            raise TypeError(f"Got unexpected keyword argument {kwargs.keys()}")
        with self._lock:
            if args in self._cache:
                self._cache.move_to_end(args)
                self._hits += 1
                return self._cache[args]

        result = self._func(*args, **kwargs)

        with self._lock:
            self._cache[args] = result
            self._misses += 1
            if len(self._cache) > self._max_size:
                self._cache.popitem(last=False)

        return result

    def is_key_cached(self, *args: Any) -> bool:
        with self._lock:
            return args in self._cache

    def add_key(self, result: T, *args: Any) -> None:
        with self._lock:
            self._cache[args] = result
            if len(self._cache) > self._max_size:
                self._cache.popitem(last=False)

    def cache_info(self) -> UpdatableLRU.CacheInfo:
        with self._lock:
            return self.CacheInfo(
                maxsize=self._max_size,
                currsize=len(self._cache),
                hits=self._hits,
                misses=self._misses,
            )


class BackgroundBlockCache(BaseCache):
    """
    Cache holding memory as a set of blocks with pre-loading of
    the next block in the background.

    Requests are only ever made ``blocksize`` at a time, and are
    stored in an LRU cache. The least recently accessed block is
    discarded when more than ``maxblocks`` are stored. If the
    next block is not in cache, it is loaded in a separate thread
    in non-blocking way.

    Parameters
    ----------
    blocksize : int
        The number of bytes to store in each block.
        Requests are only ever made for ``blocksize``, so this
        should balance the overhead of making a request against
        the granularity of the blocks.
    fetcher : Callable
    size : int
        The total size of the file being cached.
    maxblocks : int
        The maximum number of blocks to cache for. The maximum memory
        use for this cache is then ``blocksize * maxblocks``.
    """

    name: ClassVar[str] = "background"

    def __init__(
        self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32
    ) -> None:
        super().__init__(blocksize, fetcher, size)
        self.nblocks = math.ceil(size / blocksize)
        self.maxblocks = maxblocks
        self._fetch_block_cached = UpdatableLRU(self._fetch_block, maxblocks)

        self._thread_executor = ThreadPoolExecutor(max_workers=1)
        self._fetch_future_block_number: int | None = None
        self._fetch_future: Future[bytes] | None = None
        self._fetch_future_lock = threading.Lock()

    def __repr__(self) -> str:
        return (
            f"<BackgroundBlockCache blocksize={self.blocksize}, "
            f"size={self.size}, nblocks={self.nblocks}>"
        )

    def cache_info(self) -> UpdatableLRU.CacheInfo:
        """
        The statistics on the block cache.

        Returns
        -------
        NamedTuple
            Returned directly from the LRU Cache used internally.
        """
        return self._fetch_block_cached.cache_info()

    def __getstate__(self) -> dict[str, Any]:
        state = self.__dict__
        del state["_fetch_block_cached"]
        del state["_thread_executor"]
        del state["_fetch_future_block_number"]
        del state["_fetch_future"]
        del state["_fetch_future_lock"]
        return state

    def __setstate__(self, state) -> None:
        self.__dict__.update(state)
        self._fetch_block_cached = UpdatableLRU(self._fetch_block, state["maxblocks"])
        self._thread_executor = ThreadPoolExecutor(max_workers=1)
        self._fetch_future_block_number = None
        self._fetch_future = None
        self._fetch_future_lock = threading.Lock()

    def _fetch(self, start: int | None, end: int | None) -> bytes:
        if start is None:
            start = 0
        if end is None:
            end = self.size
        if start >= self.size or start >= end:
            return b""

        # byte position -> block numbers
        start_block_number = start // self.blocksize
        end_block_number = end // self.blocksize

        fetch_future_block_number = None
        fetch_future = None
        with self._fetch_future_lock:
            # Background thread is running. Check we we can or must join it.
            if self._fetch_future is not None:
                assert self._fetch_future_block_number is not None
                if self._fetch_future.done():
                    logger.info("BlockCache joined background fetch without waiting.")
                    self._fetch_block_cached.add_key(
                        self._fetch_future.result(), self._fetch_future_block_number
                    )
                    # Cleanup the fetch variables. Done with fetching the block.
                    self._fetch_future_block_number = None
                    self._fetch_future = None
                else:
                    # Must join if we need the block for the current fetch
                    must_join = bool(
                        start_block_number
                        <= self._fetch_future_block_number
                        <= end_block_number
                    )
                    if must_join:
                        # Copy to the local variables to release lock
                        # before waiting for result
                        fetch_future_block_number = self._fetch_future_block_number
                        fetch_future = self._fetch_future

                        # Cleanup the fetch variables. Have a local copy.
                        self._fetch_future_block_number = None
                        self._fetch_future = None

        # Need to wait for the future for the current read
        if fetch_future is not None:
            logger.info("BlockCache waiting for background fetch.")
            # Wait until result and put it in cache
            self._fetch_block_cached.add_key(
                fetch_future.result(), fetch_future_block_number
            )

        # these are cached, so safe to do multiple calls for the same start and end.
        for block_number in range(start_block_number, end_block_number + 1):
            self._fetch_block_cached(block_number)

        # fetch next block in the background if nothing is running in the background,
        # the block is within file and it is not already cached
        end_block_plus_1 = end_block_number + 1
        with self._fetch_future_lock:
            if (
                self._fetch_future is None
                and end_block_plus_1 <= self.nblocks
                and not self._fetch_block_cached.is_key_cached(end_block_plus_1)
            ):
                self._fetch_future_block_number = end_block_plus_1
                self._fetch_future = self._thread_executor.submit(
                    self._fetch_block, end_block_plus_1, "async"
                )

        return self._read_cache(
            start,
            end,
            start_block_number=start_block_number,
            end_block_number=end_block_number,
        )

    def _fetch_block(self, block_number: int, log_info: str = "sync") -> bytes:
        """
        Fetch the block of data for `block_number`.
        """
        if block_number > self.nblocks:
            raise ValueError(
                f"'block_number={block_number}' is greater than "
                f"the number of blocks ({self.nblocks})"
            )

        start = block_number * self.blocksize
        end = start + self.blocksize
        logger.info("BlockCache fetching block (%s) %d", log_info, block_number)
        block_contents = super()._fetch(start, end)
        return block_contents

    def _read_cache(
        self, start: int, end: int, start_block_number: int, end_block_number: int
    ) -> bytes:
        """
        Read from our block cache.

        Parameters
        ----------
        start, end : int
            The start and end byte positions.
        start_block_number, end_block_number : int
            The start and end block numbers.
        """
        start_pos = start % self.blocksize
        end_pos = end % self.blocksize

        if start_block_number == end_block_number:
            block = self._fetch_block_cached(start_block_number)
            return block[start_pos:end_pos]

        else:
            # read from the initial
            out = []
            out.append(self._fetch_block_cached(start_block_number)[start_pos:])

            # intermediate blocks
            # Note: it'd be nice to combine these into one big request. However
            # that doesn't play nicely with our LRU cache.
            for block_number in range(start_block_number + 1, end_block_number):
                out.append(self._fetch_block_cached(block_number))

            # final block
            out.append(self._fetch_block_cached(end_block_number)[:end_pos])

            return b"".join(out)


caches: dict[str | None, type[BaseCache]] = {
    # one custom case
    None: BaseCache,
}


def register_cache(cls: type[BaseCache], clobber: bool = False) -> None:
    """'Register' cache implementation.

    Parameters
    ----------
    clobber: bool, optional
        If set to True (default is False) - allow to overwrite existing
        entry.

    Raises
    ------
    ValueError
    """
    name = cls.name
    if not clobber and name in caches:
        raise ValueError(f"Cache with name {name!r} is already known: {caches[name]}")
    caches[name] = cls


for c in (
    BaseCache,
    MMapCache,
    BytesCache,
    ReadAheadCache,
    BlockCache,
    FirstChunkCache,
    AllBytes,
    KnownPartsOfAFile,
    BackgroundBlockCache,
):
    register_cache(c)