Spaces:
Running
on
T4
Running
on
T4
Upload app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -11,25 +12,24 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers import VitsModel, VitsTokenizer
|
8 |
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
# load speech translation checkpoint
|
13 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
|
|
|
|
|
15 |
|
|
|
|
|
16 |
|
17 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-spa")
|
18 |
+
processor = VitsTokenizer.from_pretrained("facebook/mms-tts-spa")
|
19 |
+
|
20 |
+
|
21 |
|
22 |
|
23 |
def translate(audio):
|
24 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "es","task": "transcribe"})
|
25 |
return outputs["text"]
|
26 |
|
27 |
|
28 |
def synthesise(text):
|
29 |
inputs = processor(text=text, return_tensors="pt")
|
30 |
+
with torch.no_grad():
|
31 |
+
speech = model(inputs["input_ids"].to(device))
|
32 |
+
return speech.audio[0]
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|