Spaces:
Running
Running
import gradio as gr | |
import librosa | |
from transformers import pipeline | |
pipe = pipeline("audio-classification", model="lewtun/distilhubert-finetuned-gtzan-og") | |
def classify_audio(filepath): | |
audio, sampling_rate = librosa.load(filepath, sr=16_000) | |
preds = pipe(audio) | |
outputs = {} | |
for p in preds: | |
outputs[p["label"]] = p["score"] | |
return outputs | |
label = gr.outputs.Label() | |
demo = gr.Interface(fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=label) | |
demo.launch() |