File size: 24,887 Bytes
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080eb5
3545be6
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080eb5
3545be6
 
b080eb5
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8e739
c28e1a4
 
eb8e739
 
 
c28e1a4
 
 
 
 
 
 
 
 
 
 
eb8e739
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570e378
1a10025
570e378
 
 
 
 
 
 
 
 
 
 
 
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e66889
 
1a10025
6e66889
c28e1a4
 
 
 
 
 
 
6e66889
 
 
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e66889
c28e1a4
 
 
 
 
 
12d1484
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ffd2f
12d1484
 
c28e1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import requests
import streamlit as st
import wikipedia
from wikipedia import WikipediaPage
import pandas as pd
import spacy
import unicodedata
from nltk.corpus import stopwords
import numpy as np
import nltk
from newspaper import Article
nltk.download('stopwords')
from string import punctuation
import json
import time
from datetime import datetime, timedelta
import urllib
from io import BytesIO
from PIL import Image, UnidentifiedImageError
from SPARQLWrapper import SPARQLWrapper, JSON, N3
from fuzzywuzzy import process, fuzz
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from transformers import pipeline
import en_core_web_lg

sparql = SPARQLWrapper('https://dbpedia.org/sparql')

class ExtractArticleEntities:
    """ Extract article entities from a document using natural language processing (NLP) and fuzzy matching.

Parameters

- text: a string or the text of a news article to be parsed

Usage:
import ExtractArticleEntities
instantiate with text parameter ie. entities = ExtractArticleEntities(text)
retrieve Who, What, When, Where entities with entities.www_json
Non-organised entities with entiities.json


"""

    def __init__(self, text):
        self.text = text  # preprocess text at initialisation
        self.text = self.preprocessing(self.text)
        print(self.text)
        print('_____text_____')
        self.json = {}
        # Create empty dataframe to hold entity data for ease of processing
        self.entity_df = pd.DataFrame(columns=["entity", "description"])
        # Load the spacy model
        
        self.nlp = en_core_web_lg.load()
        # self.nlp = pipeline(model="spacy/en_core_web_lg")
        
        # Parse the text
        self.entity_df = self.get_who_what_where_when()
        # Disambiguate entities

        self.entity_df = self.fuzzy_disambiguation()
        self.get_related_entity()
        self.get_popularity()
        # Create JSON representation of entities
        self.entity_df = self.entity_df.drop_duplicates(subset=["description"])

        self.entity_df = self.entity_df.reset_index(drop=True)
        
        # ungrouped entity returned as json
        self.json = self.entity_json()
        # return json with entities grouped into who, what, where, when keys
        self.www_json = self.get_wwww_json()


    # def get_related_entity(self):
    #     entities = self.entity_df.description
    #     labels = self.entity_df.entity
    #     related_entity = []
    #     for entity, label in zip(entities, labels):
    #         if label in ('PERSON', 'ORG','GPE','NORP','LOC'):
    #             related_entity.append(wikipedia.search(entity, 3))
    #         else:
    #             related_entity.append([None])
        
    #     self.entity_df['Wikipedia Entity'] = related_entity

    def get_popularity(self):
        # names = self.entity_df.description
        # related_names = self.entity_df['Matched Entity']
        # for name, related_name in zip(names, related_names):
        #     if related_name:
        #         related_name.append(name)
        #         pytrends.build_payload(related_name, timeframe='now 4-d')
        #         st.dataframe(pytrends.interest_over_time())
        #         time.sleep(2)
        master_df = pd.DataFrame()
        view_list = []
        for entity in self.entity_df['Matched Entity']:
            if entity:
                entity_to_look = entity[0]
                    # print(entity_to_look, '_______')
                entity_to_look = entity_to_look.replace(' ','_')
                print(entity_to_look, '_______')
                headers = {
                    'accept': 'application/json',
                    'User-Agent': 'Foo bar'
                }
                
                now = datetime.now()
                now_dt = now.strftime(r'%Y%m%d')
                week_back = now - timedelta(days=7)
                week_back_dt = week_back.strftime(r'%Y%m%d')
                resp = requests.get(f'https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents/{entity_to_look}/daily/{week_back_dt}/{now_dt}', headers=headers)
                data = resp.json()
                # print(data)
                df = pd.json_normalize(data['items'])
                view_count = sum(df['views'])
                
            else:
                view_count = 0
            view_list.append(view_count)

        self.entity_df['Views'] = view_list
            
        
        for entity in ('PERSON','ORG','GPE','NORP','LOC'):
            related_entity_view_list = []
            grouped_df = self.entity_df[self.entity_df['entity'] == entity]
            grouped_df['Matched count'] = grouped_df['fuzzy_match'].apply(len)
            grouped_df['Wiki count'] = grouped_df['Matched Entity'].apply(len)
            
            grouped_df = grouped_df.sort_values(by=['Views', 'Matched count', 'Wiki count'], ascending=False).reset_index(drop=True)
            if not grouped_df.empty:
                # st.dataframe(grouped_df)
                master_df = pd.concat([master_df, grouped_df])
            
        self.sorted_entity_df = master_df
        if 'Views' in self.sorted_entity_df:
            self.sorted_entity_df = self.sorted_entity_df.sort_values(by=['Views'], ascending=False).reset_index(drop=True)
        # st.dataframe(self.sorted_entity_df)
            # names = grouped_df['description'][:5].values
            # print(names, type(names))
            # if names.any():
            #     # pytrends.build_payload(names, timeframe='now 1-m')
            #     st.dataframe(pytrends.get_historical_interest(names,
            #                                                 year_start=2022, month_start=10, day_start=1,
            #                                                 hour_start=0,
            #                                                 year_end=2022, month_end=10, day_end=21,
            #                                                  hour_end=0, cat=0, geo='', gprop='', sleep=0))
            # st.dataframe()
            # time.sleep(2)
            # st.dataframe(grouped_df)

    def get_related_entity(self):
        names = self.entity_df.description
        entities = self.entity_df.entity
        self.related_entity = []
        match_scores = []
        for i, (name, entity) in enumerate(zip(names, entities)):
            if entity in ('PERSON','ORG','GPE','NORP','LOC'):
                related_names = wikipedia.search(name, 10)
                # Implementing logic for getting related names instead of original text
                if related_names:
                    names.iloc[i] = related_names[0]
                self.related_entity.append(related_names)
                matches = process.extract(name, related_names)
                match_scores.append([match[0] for match in matches if match[1]>= 90 ])
            else:
                self.related_entity.append([None])
                match_scores.append([])
                # Remove nulls
        
        self.entity_df['Wikipedia Entity'] = self.related_entity
        self.entity_df['Matched Entity'] = match_scores


    def fuzzy_disambiguation(self):
        # Load the entity data
        self.entity_df['fuzzy_match'] = ''
        # Load the entity data
        person_choices = self.entity_df.loc[self.entity_df['entity'] == 'PERSON']
        org_choices = self.entity_df.loc[self.entity_df['entity'] == 'ORG']
        where_choices = self.entity_df.loc[self.entity_df['entity'] == 'GPE']
        norp_choices = self.entity_df.loc[self.entity_df['entity'] == 'NORP']
        loc_choices = self.entity_df.loc[self.entity_df['entity'] == 'LOC']
        date_choices = self.entity_df.loc[self.entity_df['entity'] == 'DATE']


        def fuzzy_match(row, choices):
            '''This function disambiguates entities by looking for maximum three matches with a score of 80 or more
            for each of the entity types. If there is no match, then the function returns None. '''
            match = process.extract(row["description"], choices["description"], limit=3)

            match = [m[0] for m in match if m[1] > 80 and m[1] != 100]
            
            if len(match) == 0:
                match = []

            if match:
                self.fuzzy_match_dict[row["description"]] = match
            
            return match

        # Apply the fuzzy matching function to the entity dataframe

        self.fuzzy_match_dict = {}
            
        for i, row in self.entity_df.iterrows():
            
            if row['entity'] == 'PERSON':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, person_choices)
               
            elif row['entity'] == 'ORG':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, org_choices)
            elif row['entity'] == 'GPE':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, where_choices)

            elif row['entity'] == 'NORP':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, norp_choices)
            elif row['entity'] == 'LOC':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, loc_choices)
            elif row['entity'] == 'DATE':

                self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, date_choices)
        
        return self.entity_df

    def preprocessing(self, text):
        """This function takes a text string and strips out all punctuation. It then normalizes the string to a
        normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
        converts them to their unicode equivalents. """

        # remove punctuation
        text = text.translate(str.maketrans("", "", punctuation))
        # normalize the text
        stop_words = stopwords.words('english')

        # Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
        filtered_words = [word for word in self.text.split()] #if word not in stop_words]

        # This is very hacky. Need a better way of handling bad encoding
        pre_text = " ".join(filtered_words)
        pre_text = pre_text = pre_text.replace('  ', ' ')
        pre_text = pre_text.replace('’', "'")
        pre_text = pre_text.replace('“', '"')
        pre_text = pre_text.replace('â€', '"')
        pre_text = pre_text.replace('‘', "'")
        pre_text = pre_text.replace('…', '...')
        pre_text = pre_text.replace('–', '-')
        pre_text = pre_text.replace("\x9d", '-')
        # normalize the text
        pre_text = unicodedata.normalize("NFKD", pre_text)
        # strip punctuation again as some remains in first pass
        pre_text = pre_text.translate(str.maketrans("", "", punctuation))


        return pre_text

        
    def fuzzy_remove_duplicate_ent(self, deduped_ents, threshold=85, limit=1):
      search_space = list(deduped_ents)

      for ent in deduped_ents:
        duplicates_found = process.extract(ent, search_space.remove(ent), limit =1) # process.extract return the ent match amongst search_space with it's score
        duplicates_found = [entity[0] for entity in duplicates_found if entity[1]> threshold]

        if (len(duplicates_found) >0 ):
          deduped_ents =[entity for entity in deduped_ents if entity not in duplicates_found]

      return deduped_ents

        
    def get_who_what_where_when(self):
        """Get entity information in a document.


This function will return a DataFrame with the following columns:

- entity: the entity being queried
- description: a brief description of the entity

Usage:

get_who_what_where_when(text)

Example:

> get_who_what_where_when('This is a test')

PERSON
ORG
GPE
LOC
PRODUCT
EVENT
LAW
LANGUAGE
NORP
DATE
GPE
TIME"""

        # list to hold entity data
        article_entity_list = []
        # tokenize the text
        doc = self.nlp(self.text)
        # iterate over the entities in the document but only keep those which are meaningful
        desired_entities = ['PERSON', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'LAW', 'LANGUAGE', 'NORP', 'DATE', 'GPE',
                            'TIME']
        self.label_dict = {}

        # stop_words = stopwords.words('english')
        for ent in doc.ents:

            self.label_dict[ent] = ent.label_
            if ent.label_ in desired_entities:
                # add the entity to the list
                entity_dict = {ent.label_: ent.text}
                
                article_entity_list.append(entity_dict)

        # dedupe the entities but only on exact match of values as occasional it will assign an ORG entity to PER
        deduplicated_entities = {frozenset(item.values()):
                                     item for item in article_entity_list}.values()

        #to remove duplicate names
        deduplicated_entities = self.fuzzy_remove_duplicate_ent(deduplicated_entities, threshold = 85, limit = 1)
        
        # create a dataframe from the entities
        for record in deduplicated_entities:
            record_df = pd.DataFrame(record.items(), columns=["entity", "description"])
            self.entity_df = pd.concat([self.entity_df, record_df], ignore_index=True)

        return self.entity_df

    

    
    def entity_json(self):
        """Returns a JSON representation of an entity defined by the `entity_df` dataframe. The `entity_json` function
        will return a JSON object with the following fields:
        - entity: The type of the entity in the text
        - description: The name of the entity as described in the input text
        - fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
       """

        self.json = json.loads(self.entity_df.to_json(orient='records'))
        # self.json = json.dumps(self.json, indent=2)
        return self.json

    def get_wwww_json(self):
        """This function returns a JSON representation of the `get_who_what_where_when` function. The `get_www_json`
        function will return a JSON object with the following fields:
        - entity: The type of the entity in the text
        - description: The name of the entity as described in the input text
        - fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
        """

        # create a json object from the entity dataframe
        who_dict = {"who": [ent for ent in self.entity_json() if ent['entity'] in ['ORG', 'PERSON']]}
        where_dict = {"where": [ent for ent in self.entity_json() if ent['entity'] in ['GPE', 'LOC']]}
        when_dict = {"when": [ent for ent in self.entity_json() if ent['entity'] in ['DATE', 'TIME']]}
        what_dict = {
            "what": [ent for ent in self.entity_json() if ent['entity'] in ['PRODUCT', 'EVENT', 'LAW', 'LANGUAGE',
                                                                             'NORP']]}
        article_wwww = [who_dict, where_dict, when_dict, what_dict]
        self.wwww_json = json.dumps(article_wwww,indent=2)

        return self.wwww_json


news_article = st.text_input('Paste an Article here to be parsed')
if 'parsed' not in st.session_state:
    st.session_state['parsed'] = None
    st.session_state['article'] = None
if news_article:
    st.write('Your news article is')
    st.write(news_article)

    if st.button('Get details'):

        parsed = ExtractArticleEntities(news_article)
        if parsed:
            st.session_state['article'] = parsed.sorted_entity_df
            st.session_state['parsed'] = True
            st.session_state['json'] = parsed.www_json

# if not st.session_state['article'].empty:

def preprocessing(text):
    """This function takes a text string and strips out all punctuation. It then normalizes the string to a
    normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
    converts them to their unicode equivalents. """

    # remove punctuation
    if text:
        text = text.translate(str.maketrans("", "", punctuation))
        # normalize the text
        stop_words = stopwords.words('english')

        # Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
        filtered_words = [word for word in text.split()] #if word not in stop_words]

        # This is very hacky. Need a better way of handling bad encoding
        pre_text = " ".join(filtered_words)
        pre_text = pre_text = pre_text.replace('  ', ' ')
        pre_text = pre_text.replace('’', "'")
        pre_text = pre_text.replace('“', '"')
        pre_text = pre_text.replace('â€', '"')
        pre_text = pre_text.replace('‘', "'")
        pre_text = pre_text.replace('…', '...')
        pre_text = pre_text.replace('–', '-')
        pre_text = pre_text.replace("\x9d", '-')
        # normalize the text
        pre_text = unicodedata.normalize("NFKD", pre_text)
        # strip punctuation again as some remains in first pass
        pre_text = pre_text.translate(str.maketrans("", "", punctuation))

    else:
        pre_text = None
    return pre_text
    
def filter_wiki_df(df):

    key_list = df.keys()[:2]
    # df.to_csv('test.csv')
    df = df[key_list]
    # if len(df.keys()) == 2:
    df['Match Check'] = np.where(df[df.keys()[0]] != df[df.keys()[1]], True, False)
    
    df = df[df['Match Check']!= False]
    df = df[key_list]
    df = df.dropna(how='any').reset_index(drop=True)
    # filtered_term = []
    # for terms in df[df.keys()[0]]:
    #     if isinstance(terms, str):         
    #         filtered_term.append(preprocessing(terms))
    #     else:
    #         filtered_term.append(None)
    # df[df.keys()[0]] = filtered_term
    df.rename(columns = {key_list[0]: 'Attribute', key_list[1]: 'Value'}, inplace = True)

    return df

def get_entity_from_selectbox(related_entity):
    entity = st.selectbox('Please select the term:', related_entity, key='foo')
    if entity:
        summary_entity = wikipedia.summary(entity, 3)
        return summary_entity            
    
if st.session_state['parsed']:
    df = st.session_state['article']
    # left, right = st.columns(2)
    # with left:
    df_to_st = pd.DataFrame()

    df_to_st['Name'] = df['description']
    df_to_st['Is a type of'] = df['entity']
    df_to_st['Related to'] = df['Matched Entity']
    df_to_st['Is a type of'] = df_to_st['Is a type of'].replace({'PERSON':'Person',
                                                            'ORG':'Organization',
                                                            'GPE':'Political Location',
                                                            'NORP':'Political or Religious Groups',
                                                            'LOC':'Non Political Location'})

    gb = GridOptionsBuilder.from_dataframe(df_to_st)
    gb.configure_pagination(paginationAutoPageSize=True) #Add pagination
    gb.configure_side_bar() #Add a sidebar
    gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children") #Enable multi-row selection
    gridOptions = gb.build()

    # st.dataframe(df_to_st)
    grid_response = AgGrid(
        df_to_st,
        gridOptions=gridOptions,
        data_return_mode='AS_INPUT', 
        update_mode='MODEL_CHANGED', 
        fit_columns_on_grid_load=False,
        enable_enterprise_modules=True,
        height=350, 
        width='100%',
        reload_data=True
    )

    data = grid_response['data']
    selected = grid_response['selected_rows'] 
    selected_df = pd.DataFrame(selected)
    if not selected_df.empty:
        selected_entity = selected_df[['Name', 'Is a type of', 'Related to']]
        st.dataframe(selected_entity)


    # with right:
        # st.json(st.session_state['json'])

    entities_list = df['description']
    # selected_entity = st.selectbox('Which entity you want to choose?',
    #                     entities_list)
    if not selected_df.empty and selected_entity['Name'].any():

        # lookup_url = rf'https://lookup.dbpedia.org/api/search?query={selected_entity}'
        # r = requests.get(lookup_url)
        
        selected_row = df.loc[df['description'] == selected_entity['Name'][0]]

        entity_value = selected_row.values
        # st.write('Entity is a ', entity_value[0][0])
        label, name, fuzzy, related, related_match,_,_,_ = entity_value[0]
        not_matched = [word for word in related if word not in related_match]
        fuzzy = fuzzy[0] if len(fuzzy) > 0 else ''
        related = related[0] if len(related) > 0 else ''
        not_matched = not_matched[0] if len(not_matched) > 0 else related

        related_entity_list = [name, fuzzy, not_matched]
        related_entity = entity_value[0][1:]

        google_query_term = ' '.join(related_entity_list)
        # search()
        try:
            urls = [i for i in search(google_query_term ,stop = 10,pause = 2.0, tld='com', lang='en', tbs='0', user_agent = get_random_user_agent())]
        except:
            urls = []
        # urls = search(google_query_term+' news latest', num_results=10)
        st.session_state['wiki_summary'] = False
        all_related_entity = []
        for el in related_entity[:-2]:
            if isinstance(el, str):
                all_related_entity.append(el)
            elif isinstance(el, int):
                all_related_entity.append(str(el))
            else:
                all_related_entity.extend(el)
        # [ if type(el) == 'int' all_related_entity.extend(el) else all_related_entity.extend([el])for el in related_entity]  
        for entity in all_related_entity:
            # try:
            if True:
                if entity:
                    entity = entity.replace(' ', '_')
                    query = f'''
                        SELECT ?name ?comment ?image
                        WHERE {{ dbr:{entity} rdfs:label ?name.
                                dbr:{entity} rdfs:comment ?comment.
                                dbr:{entity} dbo:thumbnail ?image.
                        
                            FILTER (lang(?name) = 'en')
                            FILTER (lang(?comment) = 'en')
                        }}'''
                    sparql.setQuery(query)

                    sparql.setReturnFormat(JSON)
                    qres = sparql.query().convert()
                    if qres['results']['bindings']:
                        result = qres['results']['bindings'][0]
                        name, comment, image_url = result['name']['value'], result['comment']['value'], result['image']['value']
                        # urllib.request.urlretrieve(image_url, "img.jpg")

                        # img = Image.open("/Users/anujkarn/NER/img.jpg")
                        wiki_url = f'https://en.wikipedia.org/wiki/{entity}'
                        
                        st.write(name)
                        # st.image(img)
                        st.write(image_url)
                        # try:
                        response = requests.get(image_url)
                        try:
                            related_image = Image.open(BytesIO(response.content))
                            st.image(related_image)
                        except UnidentifiedImageError:
                            st.write('Not able to get image')
                            pass

                        # except error as e:
                            # st.write(f'Image not parsed because of : {e}')                
                        summary_entity = comment
                        wiki_knowledge_df = pd.read_html(wiki_url)[0]
                        wiki_knowledge_df = filter_wiki_df(wiki_knowledge_df)
                        
                        st.write('Showing desciption for entity:', name)
                        st.dataframe(wiki_knowledge_df)
                        # if st.button('Want something else?'):
                            # summary_entity = get_entity_from_selectbox(all_related_entity)
                        break
                    # summary_entity = wikipedia.summary(entity, 3)
                    else:
                        summary_entity = None
        if not summary_entity:
            try:
                summary_entity = get_entity_from_selectbox(all_related_entity)
                    # page = WikipediaPage(entity)            
            
            except wikipedia.exceptions.DisambiguationError:
                st.write('Disambiguation is there for term')
                

        if selected_entity['Name'].any():
            st.write(f'Summary for {selected_entity["Name"][0]}')
            st.write(summary_entity)