Spaces:
Runtime error
Runtime error
File size: 24,008 Bytes
c28e1a4 b080eb5 3545be6 c28e1a4 b080eb5 3545be6 b080eb5 c28e1a4 12d1484 c28e1a4 89ffd2f 12d1484 c28e1a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import requests
import streamlit as st
import wikipedia
from wikipedia import WikipediaPage
import pandas as pd
import spacy
import unicodedata
from nltk.corpus import stopwords
import numpy as np
import nltk
from newspaper import Article
nltk.download('stopwords')
from string import punctuation
import json
import time
from datetime import datetime, timedelta
import urllib
from io import BytesIO
from PIL import Image, UnidentifiedImageError
from SPARQLWrapper import SPARQLWrapper, JSON, N3
from fuzzywuzzy import process, fuzz
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from transformers import pipeline
import en_core_web_lg
sparql = SPARQLWrapper('https://dbpedia.org/sparql')
class ExtractArticleEntities:
""" Extract article entities from a document using natural language processing (NLP) and fuzzy matching.
Parameters
- text: a string or the text of a news article to be parsed
Usage:
import ExtractArticleEntities
instantiate with text parameter ie. entities = ExtractArticleEntities(text)
retrieve Who, What, When, Where entities with entities.www_json
Non-organised entities with entiities.json
"""
def __init__(self, text):
self.text = text # preprocess text at initialisation
self.text = self.preprocessing(self.text)
print(self.text)
print('_____text_____')
self.json = {}
# Create empty dataframe to hold entity data for ease of processing
self.entity_df = pd.DataFrame(columns=["entity", "description"])
# Load the spacy model
self.nlp = en_core_web_lg.load()
# self.nlp = pipeline(model="spacy/en_core_web_lg")
# Parse the text
self.entity_df = self.get_who_what_where_when()
# Disambiguate entities
self.entity_df = self.fuzzy_disambiguation()
self.get_related_entity()
self.get_popularity()
# Create JSON representation of entities
self.entity_df = self.entity_df.drop_duplicates(subset=["description"])
self.entity_df = self.entity_df.reset_index(drop=True)
# ungrouped entity returned as json
self.json = self.entity_json()
# return json with entities grouped into who, what, where, when keys
self.www_json = self.get_wwww_json()
# def get_related_entity(self):
# entities = self.entity_df.description
# labels = self.entity_df.entity
# related_entity = []
# for entity, label in zip(entities, labels):
# if label in ('PERSON', 'ORG','GPE','NORP','LOC'):
# related_entity.append(wikipedia.search(entity, 3))
# else:
# related_entity.append([None])
# self.entity_df['Wikipedia Entity'] = related_entity
def get_popularity(self):
# names = self.entity_df.description
# related_names = self.entity_df['Matched Entity']
# for name, related_name in zip(names, related_names):
# if related_name:
# related_name.append(name)
# pytrends.build_payload(related_name, timeframe='now 4-d')
# st.dataframe(pytrends.interest_over_time())
# time.sleep(2)
master_df = pd.DataFrame()
view_list = []
for entity in self.entity_df['Matched Entity']:
if entity:
entity_to_look = entity[0]
# print(entity_to_look, '_______')
entity_to_look = entity_to_look.replace(' ','_')
print(entity_to_look, '_______')
headers = {
'accept': 'application/json',
'User-Agent': 'Foo bar'
}
now = datetime.now()
now_dt = now.strftime(r'%Y%m%d')
week_back = now - timedelta(days=7)
week_back_dt = week_back.strftime(r'%Y%m%d')
resp = requests.get(f'https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents/{entity_to_look}/daily/{week_back_dt}/{now_dt}', headers=headers)
data = resp.json()
# print(data)
df = pd.json_normalize(data['items'])
view_count = sum(df['views'])
else:
view_count = 0
view_list.append(view_count)
self.entity_df['Views'] = view_list
for entity in ('PERSON','ORG','GPE','NORP','LOC'):
related_entity_view_list = []
grouped_df = self.entity_df[self.entity_df['entity'] == entity]
grouped_df['Matched count'] = grouped_df['fuzzy_match'].apply(len)
grouped_df['Wiki count'] = grouped_df['Matched Entity'].apply(len)
grouped_df = grouped_df.sort_values(by=['Views', 'Matched count', 'Wiki count'], ascending=False).reset_index(drop=True)
if not grouped_df.empty:
# st.dataframe(grouped_df)
master_df = pd.concat([master_df, grouped_df])
self.sorted_entity_df = master_df
if 'Views' in self.sorted_entity_df:
self.sorted_entity_df = self.sorted_entity_df.sort_values(by=['Views'], ascending=False).reset_index(drop=True)
# st.dataframe(self.sorted_entity_df)
# names = grouped_df['description'][:5].values
# print(names, type(names))
# if names.any():
# # pytrends.build_payload(names, timeframe='now 1-m')
# st.dataframe(pytrends.get_historical_interest(names,
# year_start=2022, month_start=10, day_start=1,
# hour_start=0,
# year_end=2022, month_end=10, day_end=21,
# hour_end=0, cat=0, geo='', gprop='', sleep=0))
# st.dataframe()
# time.sleep(2)
# st.dataframe(grouped_df)
def get_related_entity(self):
names = self.entity_df.description
entities = self.entity_df.entity
self.related_entity = []
match_scores = []
for name, entity in zip(names, entities):
if entity in ('PERSON','ORG','GPE','NORP','LOC'):
related_names = wikipedia.search(name, 10)
self.related_entity.append(related_names)
matches = process.extract(name, related_names)
match_scores.append([match[0] for match in matches if match[1]>= 90 ])
else:
self.related_entity.append([None])
match_scores.append([])
# Remove nulls
self.entity_df['Wikipedia Entity'] = self.related_entity
self.entity_df['Matched Entity'] = match_scores
def fuzzy_disambiguation(self):
# Load the entity data
self.entity_df['fuzzy_match'] = ''
# Load the entity data
person_choices = self.entity_df.loc[self.entity_df['entity'] == 'PERSON']
org_choices = self.entity_df.loc[self.entity_df['entity'] == 'ORG']
where_choices = self.entity_df.loc[self.entity_df['entity'] == 'GPE']
norp_choices = self.entity_df.loc[self.entity_df['entity'] == 'NORP']
loc_choices = self.entity_df.loc[self.entity_df['entity'] == 'LOC']
date_choices = self.entity_df.loc[self.entity_df['entity'] == 'DATE']
def fuzzy_match(row, choices):
'''This function disambiguates entities by looking for maximum three matches with a score of 80 or more
for each of the entity types. If there is no match, then the function returns None. '''
match = process.extract(row["description"], choices["description"], limit=3)
match = [m[0] for m in match if m[1] > 80 and m[1] != 100]
if len(match) == 0:
match = []
if match:
self.fuzzy_match_dict[row["description"]] = match
return match
# Apply the fuzzy matching function to the entity dataframe
self.fuzzy_match_dict = {}
for i, row in self.entity_df.iterrows():
if row['entity'] == 'PERSON':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, person_choices)
elif row['entity'] == 'ORG':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, org_choices)
elif row['entity'] == 'GPE':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, where_choices)
elif row['entity'] == 'NORP':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, norp_choices)
elif row['entity'] == 'LOC':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, loc_choices)
elif row['entity'] == 'DATE':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, date_choices)
return self.entity_df
def preprocessing(self, text):
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
converts them to their unicode equivalents. """
# remove punctuation
text = text.translate(str.maketrans("", "", punctuation))
# normalize the text
stop_words = stopwords.words('english')
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
filtered_words = [word for word in self.text.split()] #if word not in stop_words]
# This is very hacky. Need a better way of handling bad encoding
pre_text = " ".join(filtered_words)
pre_text = pre_text = pre_text.replace(' ', ' ')
pre_text = pre_text.replace('’', "'")
pre_text = pre_text.replace('“', '"')
pre_text = pre_text.replace('â€', '"')
pre_text = pre_text.replace('‘', "'")
pre_text = pre_text.replace('…', '...')
pre_text = pre_text.replace('–', '-')
pre_text = pre_text.replace("\x9d", '-')
# normalize the text
pre_text = unicodedata.normalize("NFKD", pre_text)
# strip punctuation again as some remains in first pass
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
return pre_text
def get_who_what_where_when(self):
"""Get entity information in a document.
This function will return a DataFrame with the following columns:
- entity: the entity being queried
- description: a brief description of the entity
Usage:
get_who_what_where_when(text)
Example:
> get_who_what_where_when('This is a test')
PERSON
ORG
GPE
LOC
PRODUCT
EVENT
LAW
LANGUAGE
NORP
DATE
GPE
TIME"""
# list to hold entity data
article_entity_list = []
# tokenize the text
doc = self.nlp(self.text)
# iterate over the entities in the document but only keep those which are meaningful
desired_entities = ['PERSON', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'LAW', 'LANGUAGE', 'NORP', 'DATE', 'GPE',
'TIME']
self.label_dict = {}
# stop_words = stopwords.words('english')
for ent in doc.ents:
self.label_dict[ent] = ent.label_
if ent.label_ in desired_entities:
# add the entity to the list
entity_dict = {ent.label_: ent.text}
article_entity_list.append(entity_dict)
# dedupe the entities but only on exact match of values as occasional it will assign an ORG entity to PER
deduplicated_entities = {frozenset(item.values()):
item for item in article_entity_list}.values()
# create a dataframe from the entities
for record in deduplicated_entities:
record_df = pd.DataFrame(record.items(), columns=["entity", "description"])
self.entity_df = pd.concat([self.entity_df, record_df], ignore_index=True)
print(self.entity_df)
print('______________________')
return self.entity_df
def entity_json(self):
"""Returns a JSON representation of an entity defined by the `entity_df` dataframe. The `entity_json` function
will return a JSON object with the following fields:
- entity: The type of the entity in the text
- description: The name of the entity as described in the input text
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
"""
self.json = json.loads(self.entity_df.to_json(orient='records'))
# self.json = json.dumps(self.json, indent=2)
return self.json
def get_wwww_json(self):
"""This function returns a JSON representation of the `get_who_what_where_when` function. The `get_www_json`
function will return a JSON object with the following fields:
- entity: The type of the entity in the text
- description: The name of the entity as described in the input text
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
"""
# create a json object from the entity dataframe
who_dict = {"who": [ent for ent in self.entity_json() if ent['entity'] in ['ORG', 'PERSON']]}
where_dict = {"where": [ent for ent in self.entity_json() if ent['entity'] in ['GPE', 'LOC']]}
when_dict = {"when": [ent for ent in self.entity_json() if ent['entity'] in ['DATE', 'TIME']]}
what_dict = {
"what": [ent for ent in self.entity_json() if ent['entity'] in ['PRODUCT', 'EVENT', 'LAW', 'LANGUAGE',
'NORP']]}
article_wwww = [who_dict, where_dict, when_dict, what_dict]
self.wwww_json = json.dumps(article_wwww,indent=2)
return self.wwww_json
news_article = st.text_input('Paste an Article here to be parsed')
if 'parsed' not in st.session_state:
st.session_state['parsed'] = None
st.session_state['article'] = None
if news_article:
st.write('Your news article is')
st.write(news_article)
if st.button('Get details'):
parsed = ExtractArticleEntities(news_article)
if parsed:
st.session_state['article'] = parsed.sorted_entity_df
st.session_state['parsed'] = True
st.session_state['json'] = parsed.www_json
# if not st.session_state['article'].empty:
def preprocessing(text):
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
converts them to their unicode equivalents. """
# remove punctuation
if text:
text = text.translate(str.maketrans("", "", punctuation))
# normalize the text
stop_words = stopwords.words('english')
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
filtered_words = [word for word in text.split()] #if word not in stop_words]
# This is very hacky. Need a better way of handling bad encoding
pre_text = " ".join(filtered_words)
pre_text = pre_text = pre_text.replace(' ', ' ')
pre_text = pre_text.replace('’', "'")
pre_text = pre_text.replace('“', '"')
pre_text = pre_text.replace('â€', '"')
pre_text = pre_text.replace('‘', "'")
pre_text = pre_text.replace('…', '...')
pre_text = pre_text.replace('–', '-')
pre_text = pre_text.replace("\x9d", '-')
# normalize the text
pre_text = unicodedata.normalize("NFKD", pre_text)
# strip punctuation again as some remains in first pass
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
else:
pre_text = None
return pre_text
def filter_wiki_df(df):
key_list = df.keys()[:2]
# df.to_csv('test.csv')
df = df[key_list]
# if len(df.keys()) == 2:
df['Match Check'] = np.where(df[df.keys()[0]] != df[df.keys()[1]], True, False)
df = df[df['Match Check']!= False]
df = df[key_list]
df = df.dropna(how='any').reset_index(drop=True)
# filtered_term = []
# for terms in df[df.keys()[0]]:
# if isinstance(terms, str):
# filtered_term.append(preprocessing(terms))
# else:
# filtered_term.append(None)
# df[df.keys()[0]] = filtered_term
df.rename(columns = {key_list[0]: 'Attribute', key_list[1]: 'Value'}, inplace = True)
return df
def get_entity_from_selectbox(related_entity):
entity = st.selectbox('Please select the term:', related_entity, key='foo')
if entity:
summary_entity = wikipedia.summary(entity, 3)
return summary_entity
if st.session_state['parsed']:
df = st.session_state['article']
# left, right = st.columns(2)
# with left:
df_to_st = pd.DataFrame()
df_to_st['Name'] = df['description']
df_to_st['Is a type of'] = df['entity']
df_to_st['Related to'] = df['Matched Entity']
df_to_st['Is a type of'] = df_to_st['Is a type of'].replace({'PERSON':'Person',
'ORG':'Organization',
'GPE':'Political Location',
'NORP':'Political or Religious Groups',
'LOC':'Non Political Location'})
gb = GridOptionsBuilder.from_dataframe(df_to_st)
gb.configure_pagination(paginationAutoPageSize=True) #Add pagination
gb.configure_side_bar() #Add a sidebar
gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children") #Enable multi-row selection
gridOptions = gb.build()
# st.dataframe(df_to_st)
grid_response = AgGrid(
df_to_st,
gridOptions=gridOptions,
data_return_mode='AS_INPUT',
update_mode='MODEL_CHANGED',
fit_columns_on_grid_load=False,
enable_enterprise_modules=True,
height=350,
width='100%',
reload_data=True
)
data = grid_response['data']
selected = grid_response['selected_rows']
selected_df = pd.DataFrame(selected)
if not selected_df.empty:
selected_entity = selected_df[['Name', 'Is a type of', 'Related to']]
st.dataframe(selected_entity)
# with right:
# st.json(st.session_state['json'])
entities_list = df['description']
# selected_entity = st.selectbox('Which entity you want to choose?',
# entities_list)
if not selected_df.empty and selected_entity['Name'].any():
# lookup_url = rf'https://lookup.dbpedia.org/api/search?query={selected_entity}'
# r = requests.get(lookup_url)
selected_row = df.loc[df['description'] == selected_entity['Name'][0]]
entity_value = selected_row.values
# st.write('Entity is a ', entity_value[0][0])
label, name, fuzzy, related, related_match,_,_,_ = entity_value[0]
not_matched = [word for word in related if word not in related_match]
fuzzy = fuzzy[0] if len(fuzzy) > 0 else ''
related = related[0] if len(related) > 0 else ''
not_matched = not_matched[0] if len(not_matched) > 0 else related
related_entity_list = [name, fuzzy, not_matched]
related_entity = entity_value[0][1:]
google_query_term = ' '.join(related_entity_list)
# search()
try:
urls = [i for i in search(google_query_term ,stop = 10,pause = 2.0, tld='com', lang='en', tbs='0', user_agent = get_random_user_agent())]
except:
urls = []
# urls = search(google_query_term+' news latest', num_results=10)
st.session_state['wiki_summary'] = False
all_related_entity = []
for el in related_entity[:-2]:
if isinstance(el, str):
all_related_entity.append(el)
elif isinstance(el, int):
all_related_entity.append(str(el))
else:
all_related_entity.extend(el)
# [ if type(el) == 'int' all_related_entity.extend(el) else all_related_entity.extend([el])for el in related_entity]
for entity in all_related_entity:
# try:
if True:
if entity:
entity = entity.replace(' ', '_')
query = f'''
SELECT ?name ?comment ?image
WHERE {{ dbr:{entity} rdfs:label ?name.
dbr:{entity} rdfs:comment ?comment.
dbr:{entity} dbo:thumbnail ?image.
FILTER (lang(?name) = 'en')
FILTER (lang(?comment) = 'en')
}}'''
sparql.setQuery(query)
sparql.setReturnFormat(JSON)
qres = sparql.query().convert()
if qres['results']['bindings']:
result = qres['results']['bindings'][0]
name, comment, image_url = result['name']['value'], result['comment']['value'], result['image']['value']
# urllib.request.urlretrieve(image_url, "img.jpg")
# img = Image.open("/Users/anujkarn/NER/img.jpg")
wiki_url = f'https://en.wikipedia.org/wiki/{entity}'
st.write(name)
# st.image(img)
st.write(image_url)
# try:
response = requests.get(image_url)
try:
related_image = Image.open(BytesIO(response.content))
st.image(related_image)
except UnidentifiedImageError:
st.write('Not able to get image')
pass
# except error as e:
# st.write(f'Image not parsed because of : {e}')
summary_entity = comment
wiki_knowledge_df = pd.read_html(wiki_url)[0]
wiki_knowledge_df = filter_wiki_df(wiki_knowledge_df)
st.write('Showing desciption for entity:', name)
st.dataframe(wiki_knowledge_df)
# if st.button('Want something else?'):
# summary_entity = get_entity_from_selectbox(all_related_entity)
break
# summary_entity = wikipedia.summary(entity, 3)
else:
summary_entity = None
if not summary_entity:
try:
summary_entity = get_entity_from_selectbox(all_related_entity)
# page = WikipediaPage(entity)
except wikipedia.exceptions.DisambiguationError:
st.write('Disambiguation is there for term')
if selected_entity['Name'].any():
st.write(f'Summary for {selected_entity["Name"][0]}')
st.write(summary_entity)
|