from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import os | |
hf_cache_folder = './huggingface_cache/' | |
os.makedirs(hf_cache_folder, exist_ok=True) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_id = "CohereForAI/c4ai-command-r-v01-4bit" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=hf_cache_folder) | |
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir=hf_cache_folder).to(device) | |
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> | |
async def get_answer_from_llm(question: str = None): | |
# Format message with the command-r chat template | |
messages = [{"role": "user", "content": f"{question}"}] | |
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
gen_tokens = model.generate( | |
input_ids, | |
max_new_tokens=100, | |
do_sample=True, | |
temperature=0.3, | |
) | |
gen_text = tokenizer.decode(gen_tokens[0]) | |
return gen_text | |