Spaces:
Sleeping
Sleeping
File size: 11,360 Bytes
3fa3306 7957649 3fa3306 8189b4d 3fa3306 7957649 8189b4d 3fa3306 7957649 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 7957649 8189b4d 7957649 9881d27 7957649 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 3fa3306 8189b4d 3fa3306 7957649 3fa3306 7957649 3fa3306 7957649 3fa3306 7957649 8189b4d 7957649 8189b4d 7957649 3fa3306 6f53ea2 3fa3306 7957649 8189b4d 7957649 3fa3306 8189b4d 3fa3306 8189b4d 7957649 8189b4d 3fa3306 7957649 3fa3306 7957649 3fa3306 7957649 77865bb 7957649 8b94322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import pickle
import streamlit as st
st.set_page_config(layout="wide")
from streamlit_modal import Modal
import numpy as np
import bookdb
import ai_services
st.header("My Book Buddy π")
if "clicked_book" not in st.session_state:
st.session_state["clicked_book"] = {}
if "closestReadBook" not in st.session_state:
st.session_state["closestReadBook"] = None
if "suggestedBookText" not in st.session_state:
st.session_state["suggestedBookText"] = ""
if "upvoted_book_ids" not in st.session_state:
st.session_state["upvoted_book_ids"] = []
if "downvoted_book_ids" not in st.session_state:
st.session_state["downvoted_book_ids"] = []
if "recommendedBooksData" not in st.session_state:
st.session_state["recommendedBooksData"] = None
if "topCorrelatedReadersData" not in st.session_state:
st.session_state["topCorrelatedReadersData"] = None
if "numSimilarUsers" not in st.session_state:
st.session_state["numSimilarUsers"] = 0
def update_display(displayData):
st.session_state["upvoted_book_ids"] = displayData["upvotedBookIds"]
st.session_state["downvoted_book_ids"] = displayData["downvotedBookIds"]
st.session_state["numSimilarUsers"] = displayData["numSimilarUsers"]
st.session_state["recommendedBooksData"] = displayData["recommendedBooksData"]
st.session_state["topCorrelatedReadersData"] = displayData["topCorrelatedReadersData"]
st.session_state["bookByRatingData"] = displayData["bookByRatingData"]
def on_reset_votes():
st.session_state["upvoted_book_ids"] = []
st.session_state["downvoted_book_ids"] = []
st.session_state["numSimilarUsers"] = 0
st.session_state["recommendedBooksData"] = None
st.session_state["topCorrelatedReadersData"] = None
st.session_state["bookByRatingData"] = None
def on_test_submit_votes():
upvotedBookIds = [104, 103, 102, 110, 113, 124, 129, 135, 141, 142, 155, 161, 165, 176, 181, 974, 4443, 1496, 1003, 2600] # TODO REMOVE
downvotedBookIds = [126, 179, 183, 184, 187, 9076, 960, 5895, 777, 6902, 2084, 584] # TODO REMOVE
update_display(bookdb.update_user_ratings(upvotedBookIds, downvotedBookIds))
def on_submit_votes():
upvoteBookTitles = st.session_state["multiselect_upvote"]
downvoteBookTitles = st.session_state["multiselect_downvote"]
if len(upvoteBookTitles) == 0 and len(downvoteBookTitles) == 0:
st.warning("Please select at least one book to upvote or downvote")
return
booksToUpvote = bookdb.get_book_ids_by_title(upvoteBookTitles)
booksToDownvote = bookdb.get_book_ids_by_title(downvoteBookTitles)
# get the currently voted book ids
upvotedBookIds = st.session_state["upvoted_book_ids"]
downvotedBookIds = st.session_state["downvoted_book_ids"]
if (len(upvotedBookIds) + len(booksToUpvote)) == 0 or (len(downvotedBookIds) + len(booksToDownvote)) == 0:
st.warning("You must select at least one book to upvote and one book to downvote")
return
# append booksToUpvote to upvotedBookIds
upvotedBookIds.extend(booksToUpvote)
# append booksToDownvote to downvotedBookIds
downvotedBookIds.extend(booksToDownvote)
# remove any upvoted books from downvotedBookIds if they are in there
downvotedBookIds = [x for x in downvotedBookIds if x not in upvotedBookIds]
# clear the multiselects
st.session_state.multiselect_upvote = []
st.session_state.multiselect_downvote = []
update_display(bookdb.update_user_ratings(upvotedBookIds, downvotedBookIds))
clickedBook = st.session_state["clicked_book"] if "clicked_book" in st.session_state else {}
modal = Modal(
f"π {clickedBook['title'] if 'title' in clickedBook else ''}",
key="book-modal"
)
def on_update_recommendations():
# iterate through the number of recommendations and check the selected radio button
recommendations = st.session_state["recommendedBooksData"]
bookIdsToUpvote = []
bookIdsToDownvote = []
for counter in range(len(recommendations)):
radioKey = f"update_recommendation_{counter}"
radioValue = st.session_state[radioKey]
if radioValue == "π":
bookIdsToUpvote.append(recommendations[counter]["book_id"])
elif radioValue == "π":
bookIdsToDownvote.append(recommendations[counter]["book_id"])
# reset the radio button
st.session_state[radioKey] = None
if len(bookIdsToUpvote) == 0 and len(bookIdsToDownvote) == 0:
st.warning("Please select at least one book to upvote or downvote")
return
# append booksToUpvote to upvotedBookIds
upvotedBookIds = st.session_state["upvoted_book_ids"]
downvotedBookIds = st.session_state["downvoted_book_ids"]
upvotedBookIds.extend(bookIdsToUpvote)
downvotedBookIds.extend(bookIdsToDownvote)
# remove any upvoted books from downvotedBookIds if they are in there
downvotedBookIds = [x for x in downvotedBookIds if x not in upvotedBookIds]
update_display(bookdb.update_user_ratings(upvotedBookIds, downvotedBookIds))
if st.session_state["recommendedBooksData"] is not None:
recommendations = st.session_state["recommendedBooksData"]
st.subheader("Recommendations")
recommendationsCol1, recommendationsCol2, recommendationsCol3 = st.columns(3)
for counter in range(len(recommendations)):
bookData = recommendations[counter]
bookMetadata = bookdb.get_book_metadata_by_id(bookData["book_id"])
# print(bookMetadata)
if counter % 3 == 0:
container = recommendationsCol1.container(border=True)
elif counter % 3 == 1:
container = recommendationsCol2.container(border=True)
else:
container = recommendationsCol3.container(border=True)
bookAuthor = bookData["authors"]
bookTitle = bookData["title"]
bookPubYear = bookData["original_publication_year"]
containerCol1, containerCol2, containerCol3 = container.columns([5, 10, 2])
containerCol1.html(f"<img width='100%' src='{bookMetadata['thumbnail']}'>")
textContainer = containerCol2.container()
titleClicked = textContainer.button(f"{bookTitle}", use_container_width=True)
if titleClicked:
bookByRatingData = st.session_state["bookByRatingData"]
upvotedBookIds = st.session_state["upvoted_book_ids"]
targetBookId = bookData["book_id"]
closestReadBookData = bookdb.find_closest_read_title(bookByRatingData, upvotedBookIds, targetBookId)
targetBookData = bookdb.get_book_data_by_id(targetBookId)
st.session_state["closestReadBook"] = closestReadBookData
st.session_state["clicked_book"] = bookData
st.session_state["suggestedBookText"] = ai_services.get_suggestion_text(closestReadBookData, targetBookData)
modal.open()
textContainer.markdown(f"*{bookAuthor}*")
textContainer.markdown(f"Published: {int(bookPubYear)}")
# containerCol2.markdown(textHTMLcontent, unsafe_allow_html=True)
# containerCol2.markdown(f"[{bookTitle}](https://streamlit.io)\n\n*{bookAuthor}*\n\nPublished: {int(bookPubYear)}")
# radioContainer = containerCol3.container()
containerCol3.radio(label="Upvote/Downvote", label_visibility="hidden", options=["π", "π"], key=f"update_recommendation_{counter}", index=None)
# radioContainer.button('Why This Book?', type="secondary", key=f"submit_{counter}")
st.button('Update Recommendations', type="primary", on_click=on_update_recommendations)
st.subheader("Your Ratings")
displayCol1, displayCol2 = st.columns(2)
if len(st.session_state["upvoted_book_ids"]) > 0:
upvotedBookIds = st.session_state["upvoted_book_ids"]
displayCol1.markdown(f"Upvoted: {len(upvotedBookIds)} book(s)")
for bookId in upvotedBookIds:
displayCol1.markdown(f' - {bookId}-{bookdb.get_book_title(bookId)}')
if len(st.session_state["downvoted_book_ids"]) > 0:
downvotedBookIds = st.session_state["downvoted_book_ids"]
displayCol2.markdown(f'Downvoted: {len(downvotedBookIds)} book(s)')
for bookId in downvotedBookIds:
displayCol2.markdown(f' - {bookId}-{bookdb.get_book_title(bookId)}')
st.button('Reset All Ratings', type="secondary", on_click=on_reset_votes)
# st.write(f"Similar User Min Percent Shared Books = {round(bookdb.SIMILAR_USER_MIN_PERCENT_SHARED_BOOKS * 100)}%")
# st.write(f"Similar User Min Correlation = {bookdb.SIMILAR_USER_MIN_CORRELATION}")
# if "numSimilarUsers" in st.session_state:
# st.write(f"{st.session_state['numSimilarUsers']} similar users")
with st.form(key='upvote_form'):
col1, col2 = st.columns(2)
allBookTitles = bookdb.get_all_book_titles()
myRatedBookTitles = bookdb.get_book_titles(st.session_state["upvoted_book_ids"] + st.session_state["downvoted_book_ids"])
# remove myRatedBookTitles from allBookTitles
remainingBookTitles = [x for x in allBookTitles if x not in myRatedBookTitles]
col1.multiselect(
'Upvote Books π',
remainingBookTitles,
key='multiselect_upvote'
)
col2.multiselect(
'Downvote Books π',
remainingBookTitles,
key='multiselect_downvote'
)
st.form_submit_button(label='Submit', type="primary", on_click=on_submit_votes)
st.form_submit_button(label='Test', type="secondary", on_click=on_test_submit_votes)
if st.session_state["topCorrelatedReadersData"] is not None:
df = st.session_state["topCorrelatedReadersData"]
st.subheader("Top Correlated Readers")
st.dataframe(df, use_container_width=True)
if modal.is_open():
with modal.container():
clickedBook = st.session_state["clicked_book"]
clickedBookMetadata = bookdb.get_book_metadata_by_id(clickedBook["book_id"])
clickedBookDescription = clickedBookMetadata["description"]
st.html(f"{clickedBookDescription}")
aiSuggestContainer = st.container(border=True)
closestReadBook = st.session_state["closestReadBook"]
suggestedBookText = st.session_state["suggestedBookText"]
aiSuggestContainer.html(f"<p style=\"color:#DA70D6;\">π« Because you liked <i><b>{closestReadBook['title']}</b></i> by <b>{closestReadBook['authors']}</b>...</p>")
aiSuggestContainer.html(f"<p style=\"color:#DA70D6;\">{suggestedBookText}</p>")
buttonCol1, buttonCol2, buttonCol3, buttonCol4 = st.columns(4)
clickedBookTitle = clickedBook["title"]
clickedBookAuthor = clickedBook["authors"]
clickedBookISBN = clickedBook["isbn"]
outboundLinkSuffix = f"{clickedBookTitle} {clickedBookAuthor}"
buttonCol1.link_button('π Bookshop', f'https://bookshop.org/search?keywords={outboundLinkSuffix}')
buttonCol2.link_button('π Biblio', f'https://www.biblio.com/search.php?stage=1&title={outboundLinkSuffix}')
buttonCol3.link_button('π§ Libro', f'https://libro.fm/search?utf8=%E2%9C%93&q={outboundLinkSuffix}')
buttonCol4.link_button('π¬ Hardcover', f'https://hardcover.app/search?q={outboundLinkSuffix}')
st.write("Version 0.1.0") |