comidan's picture
Update app.py
cf32435
"""
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
"""
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from video_llama.common.config import Config
from video_llama.common.dist_utils import get_rank
from video_llama.common.registry import registry
from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle,conv_llava_llama_2
import decord
decord.bridge.set_bridge('torch')
#%%
# imports modules for registration
from video_llama.datasets.builders import *
from video_llama.models import *
from video_llama.processors import *
from video_llama.runners import *
from video_llama.tasks import *
#%%
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval_withaudio.yaml', help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--model_type", type=str, default='vicuna', help="The type of LLM")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
model.eval()
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_ask(user_message, chatbot, chat_state):
print("building prompt...")
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
print("generating answer...")
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=1,
temperature=temperature,
max_new_tokens=240,
max_length=511)[0]
chatbot[-1][1] = llm_message
print(chat_state.get_prompt())
print(chat_state)
return chatbot, chat_state, img_list
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_imgorvideo(gr_video, gr_img, text_input,chatbot,audio_flag):
if args.model_type == 'vicuna':
chat_state = default_conversation.copy()
else:
chat_state = conv_llava_llama_2.copy()
if gr_img is None and gr_video is None:
return None, None, None, gr.update(interactive=True), chat_state, None
elif gr_video is not None:
print(gr_video)
chatbot = [((gr_video,), None)]
chat_state = default_conversation.copy()
chat_state = Conversation(
system= "You are able to understand the visual content that the user provides."
"Follow the instructions carefully and explain your answers in detail.",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
img_list = []
llm_message = chat.upload_video(gr_video, chat_state, img_list)
llm_message = chat.ask(text_input, chat_state)
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=1,
temperature=1.0,
max_new_tokens=240,
max_length=511)[0]
print(llm_message)
output = [[llm_message]]
return llm_message, output
elif gr_img is not None:
print(gr_img)
chatbot = [((gr_img,), None)]
chat_state = Conversation(
system= "You are able to understand the visual content that the user provides."
"Follow the instructions carefully and explain your answers in detail.",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
else:
# img_list = []
return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
title = """
<h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>
<h1><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/51/IBM_logo.svg/1000px-IBM_logo.svg.png", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></h1>
<h1 align="center">Video-LLaMA-2: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1>
<h5 align="center"> Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \
by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5>
Current online demo uses the 7B version of Video-LLaMA-2 due to resource limitations of running on a Nvidia A10.
From the IBM Generative AI Italy team who better adapted the model for LLAMA-2-7B. For any issue contact [email protected]
"""
cite_markdown = ("""
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023videollama,
author = {Zhang, Hang and Li, Xin and Bing, Lidong},
title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
year = 2023,
journal = {arXiv preprint arXiv:2306.02858}
url = {https://arxiv.org/abs/2306.02858}
}
""")
case_note_upload = ("""
### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
""")
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=0.5):
video = gr.Video()
image = gr.Image(type="filepath")
gr.Markdown(case_note_upload)
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
audio = gr.Checkbox(interactive=True, value=False, label="Audio")
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Video-LLaMA')
text_input = gr.Textbox(label='User', placeholder='Upload your image/video first, or directly click the examples at the bottom of the page.', interactive=False)
output = gr.Textbox(label='Output')
gr.Markdown(cite_markdown)
#upload_button.click(upload_imgorvideo, inputs=[video, image, text_input], outputs=[chat_state,chatbot])
text_input.submit(upload_imgorvideo, inputs=[video, image, text_input], outputs=[output])
#clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.queue().launch(debug=True)
# %%