colbyford commited on
Commit
76f2fb3
1 Parent(s): c7cc63a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -15
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import re
2
  from pathlib import Path
3
  import gradio as gr
4
 
@@ -25,6 +25,7 @@ def make_cond_seq(seq_len, msa_file, n_sequences, model_type):
25
  if model_type == "EvoDiff-MSA":
26
  checkpoint = MSA_OA_DM_MAXSUB()
27
  model, collater, tokenizer, scheme = checkpoint
 
28
  tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
29
 
30
  return generated_sequence
@@ -49,6 +50,7 @@ def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_ty
49
  checkpoint = OA_DM_38M()
50
  model, collater, tokenizer, scheme = checkpoint
51
  data_top_dir = ''
 
52
  start_idx = list(map(int, start_idx.strip('][').split(',')))
53
  end_idx = list(map(int, end_idx.strip('][').split(',')))
54
  generated_sequence, new_start_idx, new_end_idx = generate_scaffold(model, pdb_code, start_idx, end_idx, scaffold_length, data_top_dir, tokenizer, device='cpu')
@@ -67,9 +69,7 @@ usg_app = gr.Interface(
67
  gr.Slider(10, 250, step=1, label = "Sequence Length"),
68
  gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
69
  ],
70
- outputs=[
71
- "text"
72
- ],
73
  title = "Unconditional sequence generation",
74
  description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
75
  )
@@ -82,9 +82,7 @@ csg_app = gr.Interface(
82
  gr.Number(value=64, placeholder=64, precision=0, label = "Number of Sequences to Sample"),
83
  gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
84
  ],
85
- outputs=[
86
- "text"
87
- ],
88
  # examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
89
  title = "Conditional sequence generation",
90
  description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model."
@@ -93,14 +91,14 @@ csg_app = gr.Interface(
93
  idr_app = gr.Interface(
94
  fn=make_inpainted_idrs,
95
  inputs=[
96
- gr.Textbox(placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", label = "Sequence"),
 
 
97
  gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
98
  gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
99
  gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
100
  ],
101
- outputs=[
102
- "text"
103
- ],
104
  title = "Inpainting IDRs",
105
  description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
106
  )
@@ -108,15 +106,13 @@ idr_app = gr.Interface(
108
  scaffold_app = gr.Interface(
109
  fn=make_scaffold_motifs,
110
  inputs=[
111
- gr.Textbox(placeholder="1prw", label = "PDB Code"),
112
  gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
113
  gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
114
  gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
115
  gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
116
  ],
117
- outputs=[
118
- "text"
119
- ],
120
  title = "Scaffolding functional motifs",
121
  description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
122
  )
 
1
+ import re, os
2
  from pathlib import Path
3
  import gradio as gr
4
 
 
25
  if model_type == "EvoDiff-MSA":
26
  checkpoint = MSA_OA_DM_MAXSUB()
27
  model, collater, tokenizer, scheme = checkpoint
28
+ print(f"MSA File Path: {msa_file.name}")
29
  tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
30
 
31
  return generated_sequence
 
50
  checkpoint = OA_DM_38M()
51
  model, collater, tokenizer, scheme = checkpoint
52
  data_top_dir = ''
53
+ print("Current Scaffold Directory:", os.getcwd())
54
  start_idx = list(map(int, start_idx.strip('][').split(',')))
55
  end_idx = list(map(int, end_idx.strip('][').split(',')))
56
  generated_sequence, new_start_idx, new_end_idx = generate_scaffold(model, pdb_code, start_idx, end_idx, scaffold_length, data_top_dir, tokenizer, device='cpu')
 
69
  gr.Slider(10, 250, step=1, label = "Sequence Length"),
70
  gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
71
  ],
72
+ outputs=["text"],
 
 
73
  title = "Unconditional sequence generation",
74
  description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
75
  )
 
82
  gr.Number(value=64, placeholder=64, precision=0, label = "Number of Sequences to Sample"),
83
  gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
84
  ],
85
+ outputs=["text"],
 
 
86
  # examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
87
  title = "Conditional sequence generation",
88
  description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model."
 
91
  idr_app = gr.Interface(
92
  fn=make_inpainted_idrs,
93
  inputs=[
94
+ gr.Textbox(value = "DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI",
95
+ placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI",
96
+ label = "Sequence"),
97
  gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
98
  gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
99
  gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
100
  ],
101
+ outputs=["text"],
 
 
102
  title = "Inpainting IDRs",
103
  description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
104
  )
 
106
  scaffold_app = gr.Interface(
107
  fn=make_scaffold_motifs,
108
  inputs=[
109
+ gr.Textbox(value="1prw", placeholder="1prw", label = "PDB Code"),
110
  gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
111
  gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
112
  gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
113
  gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
114
  ],
115
+ outputs=["text"],
 
 
116
  title = "Scaffolding functional motifs",
117
  description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
118
  )