Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,66 +7,8 @@ from evodiff.generate import generate_oaardm, generate_d3pm
|
|
7 |
from evodiff.generate_msa import generate_query_oadm_msa_simple
|
8 |
from evodiff.conditional_generation import inpaint_simple, generate_scaffold
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
from colabfold.batch import run
|
13 |
-
|
14 |
-
def a3m_file(file):
|
15 |
-
return "tmp.a3m"
|
16 |
-
|
17 |
-
def predict_protein(sequence):
|
18 |
-
download_alphafold_params("alphafold2_ptm", Path("."))
|
19 |
-
results = run(
|
20 |
-
queries=[('evodiff_protein', sequence, None)],
|
21 |
-
result_dir='evodiff_protein',
|
22 |
-
use_templates=False,
|
23 |
-
num_relax=0,
|
24 |
-
msa_mode="mmseqs2_uniref_env",
|
25 |
-
model_type="alphafold2_ptm",
|
26 |
-
num_models=1,
|
27 |
-
num_recycles=1,
|
28 |
-
model_order=[1],
|
29 |
-
is_complex=False,
|
30 |
-
data_dir=Path("."),
|
31 |
-
keep_existing_results=False,
|
32 |
-
rank_by="auto",
|
33 |
-
stop_at_score=float(100),
|
34 |
-
zip_results=False,
|
35 |
-
user_agent="colabfold/google-colab-main"
|
36 |
-
)
|
37 |
-
|
38 |
-
return f"evodiff_protein/evodiff_protein_unrelaxed_rank_001_alphafold2_ptm_model_1_seed_000.pdb"
|
39 |
-
|
40 |
-
def display_pdb(path_to_pdb):
|
41 |
-
'''
|
42 |
-
#function to display pdb in py3dmol
|
43 |
-
SOURCE: https://huggingface.co/spaces/merle/PROTEIN_GENERATOR/blob/main/app.py
|
44 |
-
'''
|
45 |
-
pdb = open(path_to_pdb, "r").read()
|
46 |
-
|
47 |
-
view = py3Dmol.view(width=500, height=500)
|
48 |
-
view.addModel(pdb, "pdb")
|
49 |
-
view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
|
50 |
-
view.zoomTo()
|
51 |
-
output = view._make_html().replace("'", '"')
|
52 |
-
print(view._make_html())
|
53 |
-
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
|
54 |
-
|
55 |
-
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
|
56 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
57 |
-
allow-scripts allow-same-origin allow-popups
|
58 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
59 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
60 |
-
|
61 |
-
'''
|
62 |
-
return f"""<iframe style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera;
|
63 |
-
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
64 |
-
allow-scripts allow-same-origin allow-popups
|
65 |
-
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
66 |
-
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
67 |
-
'''
|
68 |
-
|
69 |
-
def make_uncond_seq(seq_len, model_type, pred_structure):
|
70 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
71 |
checkpoint = OA_DM_38M()
|
72 |
model, collater, tokenizer, scheme = checkpoint
|
@@ -77,29 +19,17 @@ def make_uncond_seq(seq_len, model_type, pred_structure):
|
|
77 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
78 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device='cpu')
|
79 |
|
80 |
-
|
81 |
-
path_to_pdb = predict_protein(generated_sequence)
|
82 |
-
molhtml = display_pdb(path_to_pdb)
|
83 |
-
|
84 |
-
return generated_sequence, molhtml
|
85 |
-
else:
|
86 |
-
return generated_sequence, None
|
87 |
|
88 |
-
def make_cond_seq(seq_len, msa_file, n_sequences, model_type
|
89 |
if model_type == "EvoDiff-MSA":
|
90 |
checkpoint = MSA_OA_DM_MAXSUB()
|
91 |
model, collater, tokenizer, scheme = checkpoint
|
92 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
|
93 |
|
94 |
-
|
95 |
-
path_to_pdb = predict_protein(generated_sequence)
|
96 |
-
molhtml = display_pdb(path_to_pdb)
|
97 |
-
|
98 |
-
return generated_sequence, molhtml
|
99 |
-
else:
|
100 |
-
return generated_sequence, None
|
101 |
|
102 |
-
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type
|
103 |
if model_type == "EvoDiff-Seq":
|
104 |
checkpoint = OA_DM_38M()
|
105 |
model, collater, tokenizer, scheme = checkpoint
|
@@ -112,15 +42,9 @@ def make_inpainted_idrs(sequence, start_idx, end_idx, model_type, pred_structure
|
|
112 |
"generated_region": generated_idr
|
113 |
}
|
114 |
|
115 |
-
|
116 |
-
path_to_pdb = predict_protein(entire_sequence)
|
117 |
-
molhtml = display_pdb(path_to_pdb)
|
118 |
-
|
119 |
-
return generated_idr_output, molhtml
|
120 |
-
else:
|
121 |
-
return generated_idr_output, None
|
122 |
|
123 |
-
def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type
|
124 |
if model_type == "EvoDiff-Seq":
|
125 |
checkpoint = OA_DM_38M()
|
126 |
model, collater, tokenizer, scheme = checkpoint
|
@@ -135,26 +59,16 @@ def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_ty
|
|
135 |
"new_end_index": new_end_idx
|
136 |
}
|
137 |
|
138 |
-
return generated_scaffold_output
|
139 |
-
# if pred_structure:
|
140 |
-
# # path_to_pdb = predict_protein(generated_sequence)
|
141 |
-
# path_to_pdb = f"scaffolding-pdbs/{pdb_code}.pdb"
|
142 |
-
# molhtml = display_pdb(path_to_pdb)
|
143 |
-
|
144 |
-
# return generated_scaffold_output, molhtml
|
145 |
-
# else:
|
146 |
-
# return generated_scaffold_output, None
|
147 |
|
148 |
usg_app = gr.Interface(
|
149 |
fn=make_uncond_seq,
|
150 |
inputs=[
|
151 |
-
gr.Slider(10,
|
152 |
-
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
|
153 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
154 |
],
|
155 |
outputs=[
|
156 |
-
"text"
|
157 |
-
gr.HTML()
|
158 |
],
|
159 |
title = "Unconditional sequence generation",
|
160 |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
|
@@ -163,15 +77,13 @@ usg_app = gr.Interface(
|
|
163 |
csg_app = gr.Interface(
|
164 |
fn=make_cond_seq,
|
165 |
inputs=[
|
166 |
-
gr.Slider(10,
|
167 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
168 |
-
gr.Number(value=
|
169 |
-
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
|
170 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
171 |
],
|
172 |
outputs=[
|
173 |
-
"text"
|
174 |
-
gr.HTML()
|
175 |
],
|
176 |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
|
177 |
title = "Conditional sequence generation",
|
@@ -184,12 +96,10 @@ idr_app = gr.Interface(
|
|
184 |
gr.Textbox(placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", label = "Sequence"),
|
185 |
gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
|
186 |
gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
|
187 |
-
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
|
188 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
189 |
],
|
190 |
outputs=[
|
191 |
-
"text"
|
192 |
-
gr.HTML()
|
193 |
],
|
194 |
title = "Inpainting IDRs",
|
195 |
description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
|
@@ -202,12 +112,10 @@ scaffold_app = gr.Interface(
|
|
202 |
gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
|
203 |
gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
|
204 |
gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
|
205 |
-
gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
|
206 |
-
gr.Checkbox(value=False, label = "Predict Structure?", visible=False)
|
207 |
],
|
208 |
outputs=[
|
209 |
-
"text"
|
210 |
-
gr.HTML()
|
211 |
],
|
212 |
title = "Scaffolding functional motifs",
|
213 |
description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
|
|
|
7 |
from evodiff.generate_msa import generate_query_oadm_msa_simple
|
8 |
from evodiff.conditional_generation import inpaint_simple, generate_scaffold
|
9 |
|
10 |
+
|
11 |
+
def make_uncond_seq(seq_len, model_type):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
if model_type == "EvoDiff-Seq-OADM 38M":
|
13 |
checkpoint = OA_DM_38M()
|
14 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
19 |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
|
20 |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device='cpu')
|
21 |
|
22 |
+
return generated_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def make_cond_seq(seq_len, msa_file, n_sequences, model_type):
|
25 |
if model_type == "EvoDiff-MSA":
|
26 |
checkpoint = MSA_OA_DM_MAXSUB()
|
27 |
model, collater, tokenizer, scheme = checkpoint
|
28 |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device='cpu', selection_type='random')
|
29 |
|
30 |
+
return generated_sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type):
|
33 |
if model_type == "EvoDiff-Seq":
|
34 |
checkpoint = OA_DM_38M()
|
35 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
42 |
"generated_region": generated_idr
|
43 |
}
|
44 |
|
45 |
+
return generated_idr_output
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type):
|
48 |
if model_type == "EvoDiff-Seq":
|
49 |
checkpoint = OA_DM_38M()
|
50 |
model, collater, tokenizer, scheme = checkpoint
|
|
|
59 |
"new_end_index": new_end_idx
|
60 |
}
|
61 |
|
62 |
+
return generated_scaffold_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
usg_app = gr.Interface(
|
65 |
fn=make_uncond_seq,
|
66 |
inputs=[
|
67 |
+
gr.Slider(10, 250, step=1, label = "Sequence Length"),
|
68 |
+
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
|
|
|
69 |
],
|
70 |
outputs=[
|
71 |
+
"text"
|
|
|
72 |
],
|
73 |
title = "Unconditional sequence generation",
|
74 |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
|
|
|
77 |
csg_app = gr.Interface(
|
78 |
fn=make_cond_seq,
|
79 |
inputs=[
|
80 |
+
gr.Slider(10, 250, label = "Sequence Length"),
|
81 |
gr.File(file_types=["a3m"], label = "MSA File"),
|
82 |
+
gr.Number(value=64, placeholder=64, precision=0, label = "Number of Sequences to Sample"),
|
83 |
+
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
|
|
|
84 |
],
|
85 |
outputs=[
|
86 |
+
"text"
|
|
|
87 |
],
|
88 |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
|
89 |
title = "Conditional sequence generation",
|
|
|
96 |
gr.Textbox(placeholder="DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", label = "Sequence"),
|
97 |
gr.Number(value=20, placeholder=20, precision=0, label = "Start Index"),
|
98 |
gr.Number(value=50, placeholder=50, precision=0, label = "End Index"),
|
99 |
+
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
|
|
|
100 |
],
|
101 |
outputs=[
|
102 |
+
"text"
|
|
|
103 |
],
|
104 |
title = "Inpainting IDRs",
|
105 |
description="Inpaining a new region inside a given sequence using the `EvoDiff-Seq` model."
|
|
|
112 |
gr.Textbox(value="[15, 51]", placeholder="[15, 51]", label = "Start Index (as list)"),
|
113 |
gr.Textbox(value="[34, 70]", placeholder="[34, 70]", label = "End Index (as list)"),
|
114 |
gr.Number(value=75, placeholder=75, precision=0, label = "Scaffold Length"),
|
115 |
+
gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
|
|
|
116 |
],
|
117 |
outputs=[
|
118 |
+
"text"
|
|
|
119 |
],
|
120 |
title = "Scaffolding functional motifs",
|
121 |
description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
|