evodiff / app.py
colbyford's picture
Update app.py
f257a1d verified
raw
history blame
7.06 kB
import re, os
from pathlib import Path
import gradio as gr
import spaces
import torch
from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M, MSA_OA_DM_MAXSUB
from evodiff.generate import generate_oaardm, generate_d3pm
from evodiff.generate_msa import generate_query_oadm_msa_simple
from evodiff.conditional_generation import inpaint_simple, generate_scaffold
device = 'cuda' if torch.cuda.is_available() else 'cpu'
@spaces.GPU()
def make_uncond_seq(seq_len, model_type):
if model_type == "EvoDiff-Seq-OADM 38M":
checkpoint = OA_DM_38M()
model, collater, tokenizer, scheme = checkpoint
tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, int(seq_len), batch_size=1, device=device)
if model_type == "EvoDiff-D3PM-Uniform 38M":
checkpoint = D3PM_UNIFORM_38M(return_all=True)
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device=device)
return generated_sequence
def make_cond_seq(seq_len, msa_file, n_sequences, model_type):
if model_type == "EvoDiff-MSA":
checkpoint = MSA_OA_DM_MAXSUB()
model, collater, tokenizer, scheme = checkpoint
print(f"MSA File Path: {msa_file.name}")
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device=device, selection_type='random')
return generated_sequence
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type):
if model_type == "EvoDiff-Seq":
checkpoint = OA_DM_38M()
model, collater, tokenizer, scheme = checkpoint
sample, entire_sequence, generated_idr = inpaint_simple(model, sequence, int(start_idx), int(end_idx), tokenizer=tokenizer, device=device)
generated_idr_output = {
"original_sequence": sequence,
"generated_sequence": entire_sequence,
"original_region": sequence[start_idx:end_idx],
"generated_region": generated_idr
}
return generated_idr_output
# def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type):
# if model_type == "EvoDiff-Seq":
# checkpoint = OA_DM_38M()
# model, collater, tokenizer, scheme = checkpoint
# data_top_dir = '/home/user/.cache/huggingface/datasets/'
# os.makedirs(data_top_dir, exist_ok=True)
# # print("Folders in User Cache Directory:", os.listdir("/home/user/.cache"))
# start_idx = list(map(int, start_idx.strip('][').split(',')))
# end_idx = list(map(int, end_idx.strip('][').split(',')))
# generated_sequence, new_start_idx, new_end_idx = generate_scaffold(model, pdb_code, start_idx, end_idx, scaffold_length, data_top_dir, tokenizer, device=device)
# generated_scaffold_output = {
# "generated_sequence": generated_sequence,
# "new_start_index": new_start_idx,
# "new_end_index": new_end_idx
# }
# return generated_scaffold_output
usg_app = gr.Interface(
fn=make_uncond_seq,
inputs=[
gr.Slider(10, 250, step=1, label = "Sequence Length"),
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model")
],
outputs=["text"],
title = "Unconditional sequence generation",
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models."
)
csg_app = gr.Interface(
fn=make_cond_seq,
inputs=[
gr.Slider(10, 250, label = "Sequence Length"),
gr.File(file_types=["a3m"], label = "MSA File"),
gr.Number(value=64, precision=0, label = "Number of Sequences to Sample"),
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model")
],
outputs=["text"],
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]],
title = "Conditional sequence generation",
description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model."
)
idr_app = gr.Interface(
fn=make_inpainted_idrs,
inputs=[
gr.Textbox(value = "DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI",
label = "Sequence"),
gr.Number(value=20, precision=0, label = "Start Index"),
gr.Number(value=50, precision=0, label = "End Index"),
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model")
],
outputs=["text"],
title = "Inpainting IDRs",
description="Inpainting a new region inside a given sequence using the `EvoDiff-Seq` model."
)
# scaffold_app = gr.Interface(
# fn=make_scaffold_motifs,
# inputs=[
# gr.Textbox(value="1prw", label = "PDB Code"),
# gr.Textbox(value="[15, 51]", label = "Start Index (as list)"),
# gr.Textbox(value="[34, 70]", label = "End Index (as list)"),
# gr.Number(value=75, precision=0, label = "Scaffold Length"),
# gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model")
# ],
# outputs=["text"],
# title = "Scaffolding functional motifs",
# description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model."
# )
with gr.Blocks() as edapp:
with gr.Row():
gr.Markdown(
"""
# EvoDiff
## Generation of protein sequences and evolutionary alignments via discrete diffusion models
Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, Ava P. Amini, and Kevin K. Yang]
Spaces App By: Tuple, The Cloud Genomics Company [Colby T. Ford]
<span style="color:red">Note: When you first run this app, the models will take a few minutes to download from Zenodo. Check the logs for the download status.</span>
"""
)
with gr.Row():
gr.TabbedInterface([
usg_app,
csg_app,
idr_app#,
# scaffold_app
],
[
"Unconditional sequence generation",
"Conditional generation",
"Inpainting IDRs"#,
# "Scaffolding functional motifs"
])
if __name__ == "__main__":
edapp.launch()