Spaces:
Running
Running
import re, os | |
from pathlib import Path | |
import gradio as gr | |
import spaces | |
import torch | |
from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M, MSA_OA_DM_MAXSUB | |
from evodiff.generate import generate_oaardm, generate_d3pm | |
from evodiff.generate_msa import generate_query_oadm_msa_simple | |
from evodiff.conditional_generation import inpaint_simple, generate_scaffold | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def make_uncond_seq(seq_len, model_type): | |
if model_type == "EvoDiff-Seq-OADM 38M": | |
checkpoint = OA_DM_38M() | |
model, collater, tokenizer, scheme = checkpoint | |
tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, int(seq_len), batch_size=1, device=device) | |
if model_type == "EvoDiff-D3PM-Uniform 38M": | |
checkpoint = D3PM_UNIFORM_38M(return_all=True) | |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint | |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, int(seq_len), batch_size=1, device=device) | |
return generated_sequence | |
def make_cond_seq(seq_len, msa_file, n_sequences, model_type): | |
if model_type == "EvoDiff-MSA": | |
checkpoint = MSA_OA_DM_MAXSUB() | |
model, collater, tokenizer, scheme = checkpoint | |
print(f"MSA File Path: {msa_file.name}") | |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, int(n_sequences), seq_length=int(seq_len), device=device, selection_type='random') | |
return generated_sequence | |
def make_inpainted_idrs(sequence, start_idx, end_idx, model_type): | |
if model_type == "EvoDiff-Seq": | |
checkpoint = OA_DM_38M() | |
model, collater, tokenizer, scheme = checkpoint | |
sample, entire_sequence, generated_idr = inpaint_simple(model, sequence, int(start_idx), int(end_idx), tokenizer=tokenizer, device=device) | |
generated_idr_output = { | |
"original_sequence": sequence, | |
"generated_sequence": entire_sequence, | |
"original_region": sequence[start_idx:end_idx], | |
"generated_region": generated_idr | |
} | |
return generated_idr_output | |
# def make_scaffold_motifs(pdb_code, start_idx, end_idx, scaffold_length, model_type): | |
# if model_type == "EvoDiff-Seq": | |
# checkpoint = OA_DM_38M() | |
# model, collater, tokenizer, scheme = checkpoint | |
# data_top_dir = '/home/user/.cache/huggingface/datasets/' | |
# os.makedirs(data_top_dir, exist_ok=True) | |
# # print("Folders in User Cache Directory:", os.listdir("/home/user/.cache")) | |
# start_idx = list(map(int, start_idx.strip('][').split(','))) | |
# end_idx = list(map(int, end_idx.strip('][').split(','))) | |
# generated_sequence, new_start_idx, new_end_idx = generate_scaffold(model, pdb_code, start_idx, end_idx, scaffold_length, data_top_dir, tokenizer, device=device) | |
# generated_scaffold_output = { | |
# "generated_sequence": generated_sequence, | |
# "new_start_index": new_start_idx, | |
# "new_end_index": new_end_idx | |
# } | |
# return generated_scaffold_output | |
usg_app = gr.Interface( | |
fn=make_uncond_seq, | |
inputs=[ | |
gr.Slider(10, 250, step=1, label = "Sequence Length"), | |
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], value="EvoDiff-Seq-OADM 38M", type="value", label = "Model") | |
], | |
outputs=["text"], | |
title = "Unconditional sequence generation", | |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models." | |
) | |
csg_app = gr.Interface( | |
fn=make_cond_seq, | |
inputs=[ | |
gr.Slider(10, 250, label = "Sequence Length"), | |
gr.File(file_types=["a3m"], label = "MSA File"), | |
gr.Number(value=64, precision=0, label = "Number of Sequences to Sample"), | |
gr.Dropdown(["EvoDiff-MSA"], value="EvoDiff-MSA", type="value", label = "Model") | |
], | |
outputs=["text"], | |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]], | |
title = "Conditional sequence generation", | |
description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model." | |
) | |
idr_app = gr.Interface( | |
fn=make_inpainted_idrs, | |
inputs=[ | |
gr.Textbox(value = "DQTERTVRSFEGRRTAPYLDSRNVLTIGYGHLLNRPGANKSWEGRLTSALPREFKQRLTELAASQLHETDVRLATARAQALYGSGAYFESVPVSLNDLWFDSVFNLGERKLLNWSGLRTKLESRDWGAAAKDLGRHTFGREPVSRRMAESMRMRRGIDLNHYNI", | |
label = "Sequence"), | |
gr.Number(value=20, precision=0, label = "Start Index"), | |
gr.Number(value=50, precision=0, label = "End Index"), | |
gr.Dropdown(["EvoDiff-Seq"], value="EvoDiff-Seq", type="value", label = "Model") | |
], | |
outputs=["text"], | |
title = "Inpainting IDRs", | |
description="Inpainting a new region inside a given sequence using the `EvoDiff-Seq` model." | |
) | |
# scaffold_app = gr.Interface( | |
# fn=make_scaffold_motifs, | |
# inputs=[ | |
# gr.Textbox(value="1prw", label = "PDB Code"), | |
# gr.Textbox(value="[15, 51]", label = "Start Index (as list)"), | |
# gr.Textbox(value="[34, 70]", label = "End Index (as list)"), | |
# gr.Number(value=75, precision=0, label = "Scaffold Length"), | |
# gr.Dropdown(["EvoDiff-Seq", "EvoDiff-MSA"], value="EvoDiff-Seq", type="value", label = "Model") | |
# ], | |
# outputs=["text"], | |
# title = "Scaffolding functional motifs", | |
# description="Scaffolding a new functional motif inside a given PDB structure using the `EvoDiff-Seq` model." | |
# ) | |
with gr.Blocks() as edapp: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# EvoDiff | |
## Generation of protein sequences and evolutionary alignments via discrete diffusion models | |
Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, Ava P. Amini, and Kevin K. Yang] | |
Spaces App By: Tuple, The Cloud Genomics Company [Colby T. Ford] | |
<span style="color:red">Note: When you first run this app, the models will take a few minutes to download from Zenodo. Check the logs for the download status.</span> | |
""" | |
) | |
with gr.Row(): | |
gr.TabbedInterface([ | |
usg_app, | |
csg_app, | |
idr_app#, | |
# scaffold_app | |
], | |
[ | |
"Unconditional sequence generation", | |
"Conditional generation", | |
"Inpainting IDRs"#, | |
# "Scaffolding functional motifs" | |
]) | |
if __name__ == "__main__": | |
edapp.launch() |