Spaces:
Sleeping
Sleeping
import re | |
from pathlib import Path | |
import gradio as gr | |
from evodiff.pretrained import OA_DM_38M, D3PM_UNIFORM_38M, MSA_OA_DM_MAXSUB | |
from evodiff.generate import generate_oaardm, generate_d3pm | |
from evodiff.generate_msa import generate_query_oadm_msa_simple | |
import py3Dmol | |
from colabfold.download import download_alphafold_params, default_data_dir | |
from colabfold.utils import setup_logging | |
from colabfold.batch import get_queries, run, set_model_type | |
from colabfold.plot import plot_msa_v2 | |
def a3m_file(file): | |
return "tmp.a3m" | |
def predict_protein(sequence): | |
download_alphafold_params("alphafold2_ptm", Path(".")) | |
results = run( | |
queries=[('evodiff_protein',sequence, None)], | |
result_dir='evodiff_protein', | |
use_templates=False, | |
num_relax=0, | |
msa_mode="mmseqs2_uniref_env", | |
model_type="alphafold2_ptm", | |
num_models=1, | |
num_recycles=1, | |
model_order=[1], | |
is_complex=False, | |
data_dir=Path("."), | |
keep_existing_results=False, | |
rank_by="auto", | |
stop_at_score=float(100), | |
zip_results=False, | |
user_agent="colabfold/google-colab-main", | |
) | |
return f"evodiff_protein/evodiff_protein_unrelaxed_rank_001_alphafold2_ptm_model_1_seed_000.pdb" | |
def display_pdb(path_to_pdb): | |
''' | |
#function to display pdb in py3dmol | |
SOURCE: https://huggingface.co/spaces/merle/PROTEIN_GENERATOR/blob/main/app.py | |
''' | |
pdb = open(path_to_pdb, "r").read() | |
view = py3Dmol.view(width=500, height=500) | |
view.addModel(pdb, "pdb") | |
view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) | |
view.zoomTo() | |
output = view._make_html().replace("'", '"') | |
print(view._make_html()) | |
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input | |
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
''' | |
return f"""<iframe style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
''' | |
def make_uncond_seq(seq_len, model_type): | |
if model_type == "EvoDiff-Seq-OADM 38M": | |
checkpoint = OA_DM_38M() | |
model, collater, tokenizer, scheme = checkpoint | |
tokeinzed_sample, generated_sequence = generate_oaardm(model, tokenizer, seq_len, batch_size=1, device='cpu') | |
if model_type == "EvoDiff-D3PM-Uniform 38M": | |
checkpoint = D3PM_UNIFORM_38M(return_all=True) | |
model, collater, tokenizer, scheme, timestep, Q_bar, Q = checkpoint | |
tokeinzed_sample, generated_sequence = generate_d3pm(model, tokenizer, Q, Q_bar, timestep, seq_len, batch_size=1, device='cpu') | |
path_to_pdb = predict_protein(generated_sequence) | |
molhtml = display_pdb(path_to_pdb) | |
return generated_sequence, molhtml | |
def make_cond_seq(seq_len, msa_file, model_type): | |
if model_type == "EvoDiff-MSA": | |
checkpoint = MSA_OA_DM_MAXSUB() | |
model, collater, tokenizer, scheme = checkpoint | |
tokeinzed_sample, generated_sequence = generate_query_oadm_msa_simple(msa_file.name, model, tokenizer, n_sequences=64, seq_length=seq_len, device='cpu', selection_type='random') | |
path_to_pdb = predict_protein(generated_sequence) | |
molhtml = display_pdb(path_to_pdb) | |
return generated_sequence, molhtml | |
usg_app = gr.Interface( | |
fn=make_uncond_seq, | |
inputs=[ | |
gr.Slider(10, 100, label = "Sequence Length"), | |
gr.Dropdown(["EvoDiff-Seq-OADM 38M", "EvoDiff-D3PM-Uniform 38M"], type="value", label = "Model") | |
], | |
outputs=[ | |
"text", | |
gr.HTML() | |
], | |
title = "Unconditional sequence generation", | |
description="Generate a sequence with `EvoDiff-Seq-OADM 38M` (smaller/faster) or `EvoDiff-D3PM-Uniform 38M` (larger/slower) models." | |
) | |
csg_app = gr.Interface( | |
fn=make_cond_seq, | |
inputs=[ | |
gr.Slider(10, 100, label = "Sequence Length"), | |
gr.File(file_types=["a3m"], label = "MSA File"), | |
gr.Dropdown(["EvoDiff-MSA"], type="value", label = "Model") | |
], | |
outputs=[ | |
"text", | |
gr.HTML() | |
], | |
# examples=[["https://github.com/microsoft/evodiff/raw/main/examples/example_files/bfd_uniclust_hits.a3m"]], | |
title = "Conditional sequence generation", | |
description="Evolutionary guided sequence generation with the `EvoDiff-MSA` model." | |
) | |
with gr.Blocks() as edapp: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# EvoDiff | |
## Generation of protein sequences and evolutionary alignments via discrete diffusion models | |
Created By: Microsoft Research [Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X. Lu, Nicolo Fusi, ProfileAva P. Amini, and Kevin K. Yang] | |
Spaces App By: [Colby T. Ford](httos://github.com/colbyford) | |
""" | |
) | |
with gr.Row(): | |
gr.TabbedInterface([usg_app, csg_app], ["Unconditional sequence generation", "Conditional generation"]) | |
if __name__ == "__main__": | |
edapp.launch() |