chatbot_hello / app.py
cohit's picture
Upload folder using huggingface_hub
0722f5d verified
# -*- coding: utf-8 -*-
"""llama3-chatbot.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/135s6JfFHtKhcOcp7xB3b6v6FOYLenQEM
"""
import transformers
import torch
model_id = "unsloth/llama-3-8b-Instruct-bnb-4bit"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={
"torch_dtype": torch.float16,
"quantization_config": {"load_in_4bit": True},
"low_cpu_mem_usage": True,
},
)
messages = [
{"role": "system", "content": "You are a helpful assistant!"},
{"role": "user", "content": """Hey how are you doing today?"""},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
import gradio as gr
messages = []
def add_text(history, text):
global messages
history = history + [(text,'')]
messages = messages + [{"role":'user', 'content': text}]
return history, text
def generate(history):
global messages
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response_msg = outputs[0]["generated_text"][len(prompt):]
for char in response_msg:
history[-1][1] += char
yield history
pass
with gr.Blocks() as demo:
chatbot = gr.Chatbot(value=[], elem_id="chatbot")
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
)
txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
generate, inputs =[chatbot,],outputs = chatbot,)
demo.queue()
demo.launch(debug=True)