Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import Owlv2Processor, Owlv2ForObjectDetection | |
import spaces | |
import json | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device) | |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") | |
def query_image(img, text_queries, score_threshold): | |
text_queries = text_queries | |
text_queries = text_queries.split(",") | |
size = max(img.shape[:2]) | |
target_sizes = torch.Tensor([[size, size]]) | |
inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes) | |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] | |
result_labels = [] | |
boxes_coords = [] | |
for box, score, label in zip(boxes, scores, labels): | |
box = [int(i) for i in box.tolist()] | |
if score < score_threshold: | |
continue | |
boxes_coords.append({ | |
"object": text_queries[label.item()], | |
"pos": box | |
}) | |
result_labels.append((box, text_queries[label.item()])) | |
print(boxes_coords) | |
return [img, result_labels], boxes_coords | |
description = """ | |
Try this demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlv2">OWLv2</a>, | |
introduced in <a href="https://arxiv.org/abs/2306.09683">Scaling Open-Vocabulary Object Detection</a>. | |
\n\n Compared to OWLVIT, OWLv2 performs better both in yield and performance (average precision). | |
You can use OWLv2 to query images with text descriptions of any object. | |
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You | |
can also use the score threshold slider to set a threshold to filter out low probability predictions. | |
\n\nOWL-ViT is trained on text templates, | |
hence you can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*, | |
*"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data. | |
\n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a> | |
""" | |
demo = gr.Interface( | |
query_image, | |
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)], | |
outputs=["annotatedimage", "json"], | |
title="Zero-Shot Object Detection with OWLv2", | |
description=description, | |
) | |
demo.launch() | |