bullet / app.py
codeteach's picture
Update app.py
5e89d35 verified
raw
history blame
4.75 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
import time
# Download NLTK data
nltk.download('punkt')
# Translation models
translation_models = {
'Vietnamese': "Helsinki-NLP/opus-mt-en-vi",
'Japanese': "Helsinki-NLP/opus-mt-en-jap",
'Thai': "Helsinki-NLP/opus-mt-en-tha",
'Spanish': "Helsinki-NLP/opus-mt-en-es"
}
# Summarization models
summarization_models = {
'Scientific': "facebook/bart-large-cnn",
'Literature': "google/pegasus-xsum"
}
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
# Helper function to initialize summarization pipeline
def get_summarizer(model_name):
return pipeline("summarization", model=model_name)
# Initialize translation pipeline
def get_translator(language):
model_name = translation_models.get(language)
if model_name:
return pipeline("translation", model=model_name)
return None
# Helper function to split text into chunks
def split_text(text, max_tokens=1024):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
sentence_length = len(tokenizer.tokenize(sentence))
if current_length + sentence_length <= max_tokens:
current_chunk.append(sentence)
current_length += sentence_length
else:
chunks.append(" ".join(current_chunk))
current_chunk = [sentence]
current_length = sentence_length
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
# Helper function to summarize text
def summarize_text(text, model_name):
if len(text) < 200: # Adjust the threshold as needed
print("Input text is too short for summarization. Please provide longer text.")
return ""
summarizer = get_summarizer(model_name)
chunks = split_text(text)
summaries = []
for chunk in chunks:
try:
summary = summarizer(chunk, max_length=150, min_length=20, do_sample=False)[0]['summary_text']
summaries.append(summary)
except Exception as e:
print(f"Error summarizing chunk: {chunk}\nError: {e}")
return " ".join(summaries)
# Helper function to translate text
def translate_text(text, language):
translator = get_translator(language)
if translator:
try:
translated_text = translator(text)[0]['translation_text']
return translated_text
except Exception as e:
print(f"Error translating text: {text}\nError: {e}")
return text
return text
def process_text(input_text, model, language):
start_time = time.time()
print(f"Input text: {input_text[:500]}...") # Show only the first 500 characters for brevity
summary = summarize_text(input_text, model)
if not summary:
print("Summarization failed. Please provide longer text or try a different model.")
return "", ""
print(f"Summary: {summary[:500]}...") # Show only the first 500 characters for brevity
bullet_points = generate_bullet_points(summary)
if not bullet_points:
print("Bullet points generation failed.")
return "", ""
print(f"Bullet Points: {bullet_points}")
translated_text = translate_text(bullet_points, language)
print(f"Translated Text: {translated_text}")
end_time = time.time()
print(f"Processing time: {end_time - start_time} seconds")
return bullet_points, translated_text
def generate_bullet_points(summary):
print("Summary Text:", summary)
# Extract key sentences
sentences = sent_tokenize(summary)
if not sentences:
return ""
key_sentences = sentences[:3] # Extract the first three sentences as key points
bullet_points = "\n".join(f"- {sentence}" for sentence in key_sentences)
print("Bullet Points:", bullet_points)
return bullet_points
# Create Gradio interface
iface = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Input Text", placeholder="Paste your text here...", lines=10),
gr.Radio(choices=["Scientific", "Literature"], label="Summarization Model"),
gr.Dropdown(choices=["Vietnamese", "Japanese", "Thai", "Spanish"], label="Translate to", value="Vietnamese")
],
outputs=[
gr.Textbox(label="Bullet Points", lines=10),
gr.Textbox(label="Translated Bullet Points", lines=10)
],
title="Text to Bullet Points and Translation",
description="Paste any text, choose the summarization model, and optionally translate the bullet points into Vietnamese, Japanese, Thai, or Spanish."
)
iface.launch()