Create app_threading.py
Browse files- app_threading.py +208 -0
app_threading.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
import threading
|
6 |
+
import streamlit as st
|
7 |
+
from datasets import load_dataset, load_metric
|
8 |
+
|
9 |
+
MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"]
|
10 |
+
GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"]
|
11 |
+
|
12 |
+
|
13 |
+
@st.cache()
|
14 |
+
def load_examples():
|
15 |
+
with open("utils/examples.json", "r") as f:
|
16 |
+
examples = json.load(f)
|
17 |
+
return examples
|
18 |
+
|
19 |
+
|
20 |
+
def load_evaluation():
|
21 |
+
# load task 2 of HumanEval and code_eval_metric
|
22 |
+
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
|
23 |
+
human_eval = load_dataset("openai_humaneval")
|
24 |
+
entry_point = f"check({human_eval['test'][2]['entry_point']})"
|
25 |
+
test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point
|
26 |
+
code_eval = load_metric("code_eval")
|
27 |
+
return code_eval, test_func
|
28 |
+
|
29 |
+
|
30 |
+
def read_markdown(path):
|
31 |
+
with open(path, "r") as f:
|
32 |
+
output = f.read()
|
33 |
+
st.markdown(output, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
|
36 |
+
def generate_code(
|
37 |
+
generations, model_name, gen_prompt, max_new_tokens, temperature, seed
|
38 |
+
):
|
39 |
+
# call space using its API endpoint
|
40 |
+
url = (
|
41 |
+
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
|
42 |
+
)
|
43 |
+
r = requests.post(
|
44 |
+
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
|
45 |
+
)
|
46 |
+
generated_text = r.json()["data"][0]
|
47 |
+
generations.append(generated_text)
|
48 |
+
|
49 |
+
|
50 |
+
def generate_code_threads(
|
51 |
+
generations, models, gen_prompt, max_new_tokens, temperature, seed
|
52 |
+
):
|
53 |
+
threads = []
|
54 |
+
for model_name in models:
|
55 |
+
# create the thread
|
56 |
+
threads.append(
|
57 |
+
threading.Thread(
|
58 |
+
target=generate_code,
|
59 |
+
args=(
|
60 |
+
generations,
|
61 |
+
model_name,
|
62 |
+
gen_prompt,
|
63 |
+
max_new_tokens,
|
64 |
+
temperature,
|
65 |
+
seed,
|
66 |
+
),
|
67 |
+
)
|
68 |
+
)
|
69 |
+
threads[-1].start()
|
70 |
+
|
71 |
+
for t in threads:
|
72 |
+
t.join()
|
73 |
+
|
74 |
+
@st.cache(show_spinner=False)
|
75 |
+
def generate_teaser(gen_prompt):
|
76 |
+
generations = []
|
77 |
+
generate_code(generations, "CodeGen", gen_prompt, 10, 0.2, 42)
|
78 |
+
return generations[0]
|
79 |
+
|
80 |
+
st.set_page_config(page_icon=":laptop:", layout="wide")
|
81 |
+
with open("utils/table_contents.md", "r") as f:
|
82 |
+
contents = f.read()
|
83 |
+
|
84 |
+
st.sidebar.markdown(contents)
|
85 |
+
|
86 |
+
# Introduction
|
87 |
+
st.title("Code generation with π€")
|
88 |
+
read_markdown("utils/summary.md")
|
89 |
+
## teaser
|
90 |
+
example_text = "def print_hello_world():"
|
91 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
92 |
+
with col2:
|
93 |
+
gen_prompt = st.text_area(
|
94 |
+
"",
|
95 |
+
value=example_text,
|
96 |
+
height=100,
|
97 |
+
).strip()
|
98 |
+
if st.button("Generate code!", key=1):
|
99 |
+
with st.spinner("Generating code..."):
|
100 |
+
st.code(generate_teaser(gen_prompt))
|
101 |
+
read_markdown("utils/intro.md")
|
102 |
+
|
103 |
+
# Code datasets
|
104 |
+
st.subheader("1 - Code datasets")
|
105 |
+
read_markdown("datasets/intro.md")
|
106 |
+
read_markdown("datasets/github_code.md")
|
107 |
+
col1, col2 = st.columns([1, 2])
|
108 |
+
with col1:
|
109 |
+
selected_model = st.selectbox("", MODELS, key=1)
|
110 |
+
read_markdown(f"datasets/{selected_model.lower()}.md")
|
111 |
+
|
112 |
+
|
113 |
+
# Model architecture
|
114 |
+
st.subheader("2 - Model architecture")
|
115 |
+
read_markdown("architectures/intro.md")
|
116 |
+
col1, col2 = st.columns([1, 2])
|
117 |
+
with col1:
|
118 |
+
selected_model = st.selectbox("", MODELS, key=2)
|
119 |
+
read_markdown(f"architectures/{selected_model.lower()}.md")
|
120 |
+
|
121 |
+
# Model evaluation
|
122 |
+
st.subheader("3 - Code model evaluation")
|
123 |
+
read_markdown("evaluation/intro.md")
|
124 |
+
read_markdown("evaluation/demo_humaneval.md")
|
125 |
+
## quiz
|
126 |
+
st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:")
|
127 |
+
with open("evaluation/problem.md", "r") as f:
|
128 |
+
problem = f.read()
|
129 |
+
with open("evaluation/solution.md", "r") as f:
|
130 |
+
solution = f.read()
|
131 |
+
|
132 |
+
candidate_solution = st.text_area(
|
133 |
+
"Complete the problem:",
|
134 |
+
value=problem,
|
135 |
+
height=240,
|
136 |
+
).strip()
|
137 |
+
if st.button("Test my solution", key=2):
|
138 |
+
with st.spinner("Testing..."):
|
139 |
+
code_eval, test_func = load_evaluation()
|
140 |
+
test_cases = [test_func]
|
141 |
+
candidates = [[candidate_solution]]
|
142 |
+
pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates)
|
143 |
+
text = "Your solution didn't pass the test, pass@1 is 0 π" if pass_at_k['pass@1'] < 1 else "Congrats your pass@1 is 1! π"
|
144 |
+
st.markdown(text)
|
145 |
+
if st.button("Show model solution", key=3):
|
146 |
+
st.markdown(solution)
|
147 |
+
|
148 |
+
# Code generation
|
149 |
+
st.subheader("4 - Code generation β¨")
|
150 |
+
read_markdown("generation/intro.md")
|
151 |
+
col1, col2, col3 = st.columns([7, 1, 6])
|
152 |
+
with col1:
|
153 |
+
st.markdown("**Models**")
|
154 |
+
selected_models = st.multiselect(
|
155 |
+
"Select code generation models to compare:",
|
156 |
+
GENERATION_MODELS,
|
157 |
+
default=GENERATION_MODELS,
|
158 |
+
key=3,
|
159 |
+
)
|
160 |
+
st.markdown(" ")
|
161 |
+
st.markdown("**Examples**")
|
162 |
+
examples = load_examples()
|
163 |
+
example_names = [example["name"] for example in examples]
|
164 |
+
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
165 |
+
selected_example = st.selectbox(
|
166 |
+
"Select one of the following examples or implement yours:", example_names
|
167 |
+
)
|
168 |
+
example_text = examples[name2id[selected_example]]["value"]
|
169 |
+
default_length = examples[name2id[selected_example]]["length"]
|
170 |
+
with col3:
|
171 |
+
st.markdown("**Generation settings**")
|
172 |
+
temperature = st.slider(
|
173 |
+
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
174 |
+
)
|
175 |
+
max_new_tokens = st.slider(
|
176 |
+
"Number of tokens to generate:",
|
177 |
+
value=default_length,
|
178 |
+
min_value=8,
|
179 |
+
step=4,
|
180 |
+
max_value=256,
|
181 |
+
)
|
182 |
+
seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000)
|
183 |
+
gen_prompt = st.text_area(
|
184 |
+
"Generate code with prompt:",
|
185 |
+
value=example_text,
|
186 |
+
height=200,
|
187 |
+
).strip()
|
188 |
+
if st.button("Generate code!", key=4):
|
189 |
+
with st.spinner("Generating code..."):
|
190 |
+
# use threading
|
191 |
+
generations = []
|
192 |
+
generate_code_threads(
|
193 |
+
generations,
|
194 |
+
selected_models,
|
195 |
+
gen_prompt=gen_prompt,
|
196 |
+
max_new_tokens=max_new_tokens,
|
197 |
+
temperature=temperature,
|
198 |
+
seed=seed,
|
199 |
+
)
|
200 |
+
for i in range(len(generations)):
|
201 |
+
st.markdown(f"**{selected_models[i]}**")
|
202 |
+
st.code(generations[i])
|
203 |
+
if len(generations) < len(selected_models):
|
204 |
+
st.markdown("<span style='color:red'>Warning: Some models run into timeout, you can try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True)
|
205 |
+
|
206 |
+
# Resources
|
207 |
+
st.subheader("Resources")
|
208 |
+
read_markdown("utils/resources.md")
|