loubnabnl's picture
loubnabnl HF staff
Update app.py
539c1e5
raw
history blame
2.26 kB
import gradio as gr
from datasets import ClassLabel
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
title = "BigO"
description = "In this space we predict the complexity of Java code with [UniXcoder-java-complexity-prediction](https://huggingface.co/codeparrot/unixcoder-java-complexity-prediction),\
a multilingual model for code, fine-tuned on [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex), a dataset for complexity prediction of Java code."
#add examples
example = [['int n = 1000;\nSystem.out.println("Hey - your input is: " + n);'],
['class GFG {\n \n public static void main(String[] args)\n {\n int i, n = 8;\n for (i = 1; i <= n; i++) {\n System.out.printf("Hello World !!!\n");\n }\n }\n}'],
['import java.io.*;\nimport java.util.*;\n\npublic class C125 {\n\tpublic static void main(String[] args) throws IOException {\n\t\tBufferedReader r = new BufferedReader(new InputStreamReader(System.in));\n\t\tString s = r.readLine();\n\t\tint n = new Integer(s);\n\t\tSystem.out.println("0 0 "+n);\n\t}\n}\n']]
# model to be changed to the finetuned one
tokenizer = AutoTokenizer.from_pretrained("codeparrot/unixcoder-java-complexity-prediction")
model = AutoModelForSequenceClassification.from_pretrained("codeparrot/unixcoder-java-complexity-prediction", num_labels=7)
def get_label(output):
label = int(output[-1])
labels = ClassLabel(num_classes=7, names=['constant', 'cubic', 'linear', 'logn', 'nlogn', 'np', 'quadratic'])
return labels.int2str(label)
def complexity_estimation(gen_prompt):
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
output = pipe(gen_prompt)[0]
# add label conversion to class
label = get_label(output['label'])
score = output['score']
return label, score
iface = gr.Interface(
fn=complexity_estimation,
inputs=[
gr.Textbox(lines=10, label="Input code"),
],
outputs=[
gr.Textbox(label="Predicted complexity", lines=1) ,
gr.Textbox(label="Corresponding probability", lines=1) ,
],
examples=example,
layout="vertical",
theme="darkpeach",
description=description,
title=title
)
iface.launch()