Spaces:
Running
Running
import os | |
import gradio as gr | |
from openai import OpenAI | |
from optillm.cot_reflection import cot_reflection | |
from optillm.rto import round_trip_optimization | |
from optillm.z3_solver import Z3SolverSystem | |
from optillm.self_consistency import advanced_self_consistency_approach | |
from optillm.rstar import RStar | |
from optillm.plansearch import plansearch | |
from optillm.leap import leap | |
API_KEY = os.environ.get("OPENROUTER_API_KEY") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
approach, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
if approach == 'rto': | |
final_response = round_trip_optimization(system_prompt, initial_query, client, model) | |
elif approach == 'z3': | |
z3_solver = Z3SolverSystem(system_prompt, client, model) | |
final_response = z3_solver.process_query(initial_query) | |
elif approach == "self_consistency": | |
final_response = advanced_self_consistency_approach(system_prompt, initial_query, client, model) | |
elif approach == "rstar": | |
rstar = RStar(system_prompt, client, model) | |
final_response = rstar.solve(initial_query) | |
elif approach == "cot_reflection": | |
final_response = cot_reflection(system_prompt, initial_query, client, model) | |
elif approach == 'plansearch': | |
final_response = plansearch(system_prompt, initial_query, client, model) | |
elif approach == 'leap': | |
final_response = leap(system_prompt, initial_query, client, model) | |
return final_response | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown( | |
["nousresearch/hermes-3-llama-3.1-405b:free", "meta-llama/llama-3.1-8b-instruct:free", "qwen/qwen-2-7b-instruct:free", | |
"google/gemma-2-9b-it:free", "mistralai/mistral-7b-instruct:free", ], | |
value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model", info="Choose the base model" | |
), | |
gr.Dropdown( | |
["leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3"], value="cot_reflection", label="Approach", info="Choose the approach" | |
), | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |