optillm / app.py
codelion's picture
Update app.py
a858ac0 verified
raw
history blame
3.41 kB
import os
import gradio as gr
from openai import OpenAI
from optillm.cot_reflection import cot_reflection
from optillm.rto import round_trip_optimization
from optillm.z3_solver import Z3SolverSystem
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.rstar import RStar
from optillm.plansearch import plansearch
from optillm.leap import leap
API_KEY = os.environ.get("OPENROUTER_API_KEY")
def respond(
message,
history: list[tuple[str, str]],
model,
approach,
system_message,
max_tokens,
temperature,
top_p,
):
client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1")
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
if approach == 'rto':
final_response = round_trip_optimization(system_prompt, initial_query, client, model)
elif approach == 'z3':
z3_solver = Z3SolverSystem(system_prompt, client, model)
final_response = z3_solver.process_query(initial_query)
elif approach == "self_consistency":
final_response = advanced_self_consistency_approach(system_prompt, initial_query, client, model)
elif approach == "rstar":
rstar = RStar(system_prompt, client, model)
final_response = rstar.solve(initial_query)
elif approach == "cot_reflection":
final_response = cot_reflection(system_prompt, initial_query, client, model)
elif approach == 'plansearch':
final_response = plansearch(system_prompt, initial_query, client, model)
elif approach == 'leap':
final_response = leap(system_prompt, initial_query, client, model)
return final_response
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(
["nousresearch/hermes-3-llama-3.1-405b:free", "meta-llama/llama-3.1-8b-instruct:free", "qwen/qwen-2-7b-instruct:free",
"google/gemma-2-9b-it:free", "mistralai/mistral-7b-instruct:free", ],
value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model", info="Choose the base model"
),
gr.Dropdown(
["leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3"], value="cot_reflection", label="Approach", info="Choose the approach"
),
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()