Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,19 @@ from transformers import AutoModelForImageSegmentation
|
|
5 |
import torch
|
6 |
from torchvision import transforms
|
7 |
import moviepy.editor as mp
|
|
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
10 |
import os
|
11 |
import tempfile
|
12 |
import uuid
|
13 |
-
from concurrent.futures import ThreadPoolExecutor
|
14 |
|
15 |
torch.set_float32_matmul_precision("highest")
|
16 |
|
17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
19 |
-
)
|
20 |
-
|
21 |
transform_image = transforms.Compose(
|
22 |
[
|
23 |
transforms.Resize((1024, 1024)),
|
@@ -26,85 +26,79 @@ transform_image = transforms.Compose(
|
|
26 |
]
|
27 |
)
|
28 |
|
29 |
-
BATCH_SIZE = 3
|
30 |
-
executor = ThreadPoolExecutor(max_workers=4) # Adjust as needed
|
31 |
-
|
32 |
-
def get_background_image(bg_type, bg_image, background_frames, current_frame_index, video_handling, slow_down_factor):
|
33 |
-
if bg_type == "Video":
|
34 |
-
if video_handling == "slow_down":
|
35 |
-
frame_index = int(current_frame_index / slow_down_factor)
|
36 |
-
else:
|
37 |
-
frame_index = current_frame_index
|
38 |
-
return Image.fromarray(background_frames[frame_index % len(background_frames)])
|
39 |
-
elif bg_type == "Image":
|
40 |
-
return bg_image # Directly returns the image path
|
41 |
-
else: # bg_type == "Color"
|
42 |
-
return bg_image # bg_image here is the color string
|
43 |
|
44 |
@spaces.GPU
|
45 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
46 |
try:
|
|
|
47 |
video = mp.VideoFileClip(vid)
|
48 |
-
try:
|
49 |
-
audio = video.audio
|
50 |
-
except AttributeError:
|
51 |
-
audio = None
|
52 |
|
|
|
53 |
if fps == 0:
|
54 |
fps = video.fps
|
|
|
|
|
|
|
|
|
|
|
55 |
frames = video.iter_frames(fps=fps)
|
|
|
|
|
56 |
processed_frames = []
|
57 |
-
yield gr.update(visible=True), gr.update(visible=False)
|
58 |
|
59 |
if bg_type == "Video":
|
60 |
background_video = mp.VideoFileClip(bg_video)
|
61 |
-
if background_video.duration < video.duration
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
else:
|
67 |
background_frames = None
|
68 |
-
slow_down_factor = None # Not needed for image or color backgrounds
|
69 |
|
70 |
-
bg_frame_index = 0
|
71 |
-
frame_batch = []
|
72 |
|
73 |
for i, frame in enumerate(frames):
|
74 |
-
|
75 |
-
if
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
else:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
|
|
|
|
93 |
|
|
|
94 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
95 |
-
if audio:
|
96 |
-
processed_video = processed_video.set_audio(audio)
|
97 |
|
98 |
-
#
|
|
|
|
|
|
|
99 |
temp_dir = "temp"
|
100 |
os.makedirs(temp_dir, exist_ok=True)
|
101 |
unique_filename = str(uuid.uuid4()) + ".mp4"
|
102 |
temp_filepath = os.path.join(temp_dir, unique_filename)
|
103 |
-
processed_video.write_videofile(temp_filepath, codec="libx264"
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
yield processed_image, temp_filepath
|
108 |
|
109 |
except Exception as e:
|
110 |
print(f"Error: {e}")
|
@@ -113,27 +107,28 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
113 |
|
114 |
|
115 |
|
116 |
-
|
117 |
def process(image, bg):
|
118 |
image_size = image.size
|
119 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
|
|
120 |
with torch.no_grad():
|
121 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
122 |
pred = preds[0].squeeze()
|
123 |
pred_pil = transforms.ToPILImage()(pred)
|
124 |
mask = pred_pil.resize(image_size)
|
125 |
|
126 |
-
if isinstance(bg, str) and bg.startswith("#"):
|
127 |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
128 |
-
background = Image.new("RGBA", image_size, color_rgb + (255,))
|
129 |
elif isinstance(bg, Image.Image):
|
130 |
-
background = bg.convert("RGBA").resize(image_size)
|
131 |
-
else:
|
132 |
-
background = Image.open(bg).convert("RGBA").resize(image_size)
|
133 |
|
|
|
134 |
image = Image.composite(image, background, mask)
|
135 |
-
return image
|
136 |
|
|
|
137 |
|
138 |
|
139 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
|
5 |
import torch
|
6 |
from torchvision import transforms
|
7 |
import moviepy.editor as mp
|
8 |
+
from pydub import AudioSegment
|
9 |
from PIL import Image
|
10 |
import numpy as np
|
11 |
import os
|
12 |
import tempfile
|
13 |
import uuid
|
|
|
14 |
|
15 |
torch.set_float32_matmul_precision("highest")
|
16 |
|
17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
19 |
+
)
|
20 |
+
birefnet.to("cuda")
|
21 |
transform_image = transforms.Compose(
|
22 |
[
|
23 |
transforms.Resize((1024, 1024)),
|
|
|
26 |
]
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
32 |
try:
|
33 |
+
# Load the video using moviepy
|
34 |
video = mp.VideoFileClip(vid)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Load original fps if fps value is equal to 0
|
37 |
if fps == 0:
|
38 |
fps = video.fps
|
39 |
+
|
40 |
+
# Extract audio from the video
|
41 |
+
audio = video.audio
|
42 |
+
|
43 |
+
# Extract frames at the specified FPS
|
44 |
frames = video.iter_frames(fps=fps)
|
45 |
+
|
46 |
+
# Process each frame for background removal
|
47 |
processed_frames = []
|
48 |
+
yield gr.update(visible=True), gr.update(visible=False)
|
49 |
|
50 |
if bg_type == "Video":
|
51 |
background_video = mp.VideoFileClip(bg_video)
|
52 |
+
if background_video.duration < video.duration:
|
53 |
+
if video_handling == "slow_down":
|
54 |
+
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
55 |
+
else: # video_handling == "loop"
|
56 |
+
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
57 |
+
background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list
|
58 |
else:
|
59 |
background_frames = None
|
|
|
60 |
|
61 |
+
bg_frame_index = 0 # Initialize background frame index
|
|
|
62 |
|
63 |
for i, frame in enumerate(frames):
|
64 |
+
pil_image = Image.fromarray(frame)
|
65 |
+
if bg_type == "Color":
|
66 |
+
processed_image = process(pil_image, color)
|
67 |
+
elif bg_type == "Image":
|
68 |
+
processed_image = process(pil_image, bg_image)
|
69 |
+
elif bg_type == "Video":
|
70 |
+
if video_handling == "slow_down":
|
71 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
72 |
+
bg_frame_index += 1
|
73 |
+
background_image = Image.fromarray(background_frame)
|
74 |
+
processed_image = process(pil_image, background_image)
|
75 |
+
else: # video_handling == "loop"
|
76 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
77 |
+
bg_frame_index += 1
|
78 |
+
background_image = Image.fromarray(background_frame)
|
79 |
+
processed_image = process(pil_image, background_image)
|
80 |
+
else:
|
81 |
+
processed_image = pil_image # Default to original image if no background is selected
|
82 |
|
83 |
+
processed_frames.append(np.array(processed_image))
|
84 |
+
yield processed_image, None
|
85 |
|
86 |
+
# Create a new video from the processed frames
|
87 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
|
|
|
|
88 |
|
89 |
+
# Add the original audio back to the processed video
|
90 |
+
processed_video = processed_video.set_audio(audio)
|
91 |
+
|
92 |
+
# Save the processed video to a temporary file
|
93 |
temp_dir = "temp"
|
94 |
os.makedirs(temp_dir, exist_ok=True)
|
95 |
unique_filename = str(uuid.uuid4()) + ".mp4"
|
96 |
temp_filepath = os.path.join(temp_dir, unique_filename)
|
97 |
+
processed_video.write_videofile(temp_filepath, codec="libx264")
|
98 |
|
99 |
+
yield gr.update(visible=False), gr.update(visible=True)
|
100 |
+
# Return the path to the temporary file
|
101 |
+
yield processed_image, temp_filepath
|
102 |
|
103 |
except Exception as e:
|
104 |
print(f"Error: {e}")
|
|
|
107 |
|
108 |
|
109 |
|
|
|
110 |
def process(image, bg):
|
111 |
image_size = image.size
|
112 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
113 |
+
# Prediction
|
114 |
with torch.no_grad():
|
115 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
116 |
pred = preds[0].squeeze()
|
117 |
pred_pil = transforms.ToPILImage()(pred)
|
118 |
mask = pred_pil.resize(image_size)
|
119 |
|
120 |
+
if isinstance(bg, str) and bg.startswith("#"):
|
121 |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
122 |
+
background = Image.new("RGBA", image_size, color_rgb + (255,))
|
123 |
elif isinstance(bg, Image.Image):
|
124 |
+
background = bg.convert("RGBA").resize(image_size)
|
125 |
+
else:
|
126 |
+
background = Image.open(bg).convert("RGBA").resize(image_size)
|
127 |
|
128 |
+
# Composite the image onto the background using the mask
|
129 |
image = Image.composite(image, background, mask)
|
|
|
130 |
|
131 |
+
return image
|
132 |
|
133 |
|
134 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|