Spaces:
Runtime error
Runtime error
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cuda") | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def fn(vid): | |
# Load the video using moviepy | |
video = mp.VideoFileClip(vid) | |
# Extract audio from the video | |
audio = video.audio | |
# Extract frames at 12 fps | |
frames = video.iter_frames(fps=12) | |
# Process each frame for background removal | |
processed_frames = [] | |
for frame in frames: | |
pil_image = Image.fromarray(frame) | |
processed_image = process(pil_image) | |
processed_frames.append(np.array(processed_image)) | |
# Create a new video from the processed frames | |
processed_video = mp.ImageSequenceClip(processed_frames, fps=12) | |
# Add the original audio back to the processed video | |
processed_video = processed_video.set_audio(audio) | |
# Save the processed video to a temporary file | |
temp_dir = "temp" | |
os.makedirs(temp_dir, exist_ok=True) | |
unique_filename = str(uuid.uuid4()) + ".mp4" | |
temp_filepath = os.path.join(temp_dir, unique_filename) | |
processed_video.write_videofile(temp_filepath, codec="libx264") | |
# Return the path to the temporary file | |
return temp_filepath | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
# Create a green screen image | |
green_screen = Image.new("RGBA", image_size, (0, 255, 0, 255)) | |
# Composite the image onto the green screen using the mask | |
image = Image.composite(image, green_screen, mask) | |
return image | |
def process_file(f): | |
name_path = f.rsplit(".", 1)[0] + ".png" | |
im = load_img(f, output_type="pil") | |
im = im.convert("RGB") | |
transparent = process(im) | |
transparent.save(name_path) | |
return name_path | |
in_video = gr.Video(label="birefnet") | |
out_video = gr.Video() | |
demo = gr.Interface( | |
fn, inputs=in_video, outputs=out_video, api_name="video" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |