Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
torch.jit.script = lambda f: f
|
4 |
import timm
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from safetensors.torch import load_file
|
7 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
@@ -124,7 +125,6 @@ pipe.set_ip_adapter_scale(0.8)
|
|
124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
125 |
zoe.to(device)
|
126 |
|
127 |
-
original_pipe = copy.deepcopy(pipe)
|
128 |
pipe.to(device)
|
129 |
|
130 |
last_lora = ""
|
@@ -209,10 +209,18 @@ def generate_image(prompt, negative, face_emb, face_image, image_strength, image
|
|
209 |
global last_fused
|
210 |
if last_lora != repo_name:
|
211 |
if(last_fused):
|
|
|
212 |
pipe.unfuse_lora()
|
213 |
pipe.unload_lora_weights()
|
|
|
|
|
|
|
|
|
214 |
pipe.load_lora_weights(loaded_state_dict)
|
215 |
pipe.fuse_lora(lora_scale)
|
|
|
|
|
|
|
216 |
last_fused = True
|
217 |
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
218 |
if(is_pivotal):
|
@@ -220,7 +228,6 @@ def generate_image(prompt, negative, face_emb, face_image, image_strength, image
|
|
220 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
221 |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
222 |
state_dict_embedding = load_file(embedding_path)
|
223 |
-
print(state_dict_embedding)
|
224 |
try:
|
225 |
pipe.unload_textual_inversion()
|
226 |
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
|
|
2 |
import torch
|
3 |
torch.jit.script = lambda f: f
|
4 |
import timm
|
5 |
+
import time
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from safetensors.torch import load_file
|
8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
|
|
125 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
126 |
zoe.to(device)
|
127 |
|
|
|
128 |
pipe.to(device)
|
129 |
|
130 |
last_lora = ""
|
|
|
209 |
global last_fused
|
210 |
if last_lora != repo_name:
|
211 |
if(last_fused):
|
212 |
+
st = time.time()
|
213 |
pipe.unfuse_lora()
|
214 |
pipe.unload_lora_weights()
|
215 |
+
et = time.time()
|
216 |
+
elapsed_time = et - st
|
217 |
+
print('Unfuse and unload took: ', elapsed_time, 'seconds')
|
218 |
+
st = time.time()
|
219 |
pipe.load_lora_weights(loaded_state_dict)
|
220 |
pipe.fuse_lora(lora_scale)
|
221 |
+
et = time.time()
|
222 |
+
elapsed_time = et - st
|
223 |
+
print('Fuse and load took: ', elapsed_time, 'seconds')
|
224 |
last_fused = True
|
225 |
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
226 |
if(is_pivotal):
|
|
|
228 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
229 |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
230 |
state_dict_embedding = load_file(embedding_path)
|
|
|
231 |
try:
|
232 |
pipe.unload_textual_inversion()
|
233 |
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|