face-to-all-2 / app.py
multimodalart's picture
Update app.py
d0b76c5 verified
raw
history blame
17.2 kB
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import lora
import copy
import json
import gc
import random
from urllib.parse import quote
import gdown
import os
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
import cv2
import torch
import numpy as np
from PIL import Image
from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
from controlnet_aux import ZoeDetector
from compel import Compel, ReturnedEmbeddingsType
with open("sdxl_loras.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"likes": item.get("likes", 0),
"downloads": item.get("downloads", 0),
"is_nc": item.get("is_nc", False),
"new": item.get("new", False),
}
for item in data
]
with open("defaults_data.json", "r") as file:
lora_defaults = json.load(file)
device = "cuda"
state_dicts = {}
for item in sdxl_loras_raw:
saved_name = hf_hub_download(item["repo"], item["weights"])
if not saved_name.endswith('.safetensors'):
state_dict = torch.load(saved_name)
else:
state_dict = load_file(saved_name)
state_dicts[item["repo"]] = {
"saved_name": saved_name,
"state_dict": state_dict
}
sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True]
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
# download models
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/config.json",
local_dir="/data/checkpoints",
)
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="/data/checkpoints",
)
hf_hub_download(
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
)
hf_hub_download(
repo_id="latent-consistency/lcm-lora-sdxl",
filename="pytorch_lora_weights.safetensors",
local_dir="/data/checkpoints",
)
# download antelopev2
if not os.path.exists("/data/antelopev2.zip"):
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
os.system("unzip /data/antelopev2.zip -d /data/models/")
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# prepare models under ./checkpoints
face_adapter = f'/data/checkpoints/ip-adapter.bin'
controlnet_path = f'/data/checkpoints/ControlNetModel'
# load IdentityNet
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
vae=vae,
controlnet=[identitynet, zoedepthnet],
torch_dtype=torch.float16)
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter_instantid(face_adapter)
pipe.set_ip_adapter_scale(0.8)
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
zoe.to("cuda")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)
last_lora = ""
last_merged = False
last_fused = False
js = '''
var button = document.getElementById('button');
// Add a click event listener to the button
button.addEventListener('click', function() {
element.classList.add('selected');
});
'''
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
lora_repo = sdxl_loras[selected_state.index]["repo"]
new_placeholder = "Type a prompt to use your selected LoRA"
weight_name = sdxl_loras[selected_state.index]["weights"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
for lora_list in lora_defaults:
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
face_strength = lora_list.get("face_strength", face_strength)
image_strength = lora_list.get("image_strength", image_strength)
weight = lora_list.get("weight", weight)
depth_control_scale = lora_list.get("depth_control_scale", depth_control_scale)
negative = lora_list.get("negative", negative)
if(is_new):
if(selected_state.index == 0):
selected_state.index = -9999
else:
selected_state.index *= -1
return (
updated_text,
gr.update(placeholder=new_placeholder),
face_strength,
image_strength,
weight,
depth_control_scale,
negative,
selected_state
)
def center_crop_image_as_square(img):
square_size = min(img.size)
left = (img.width - square_size) / 2
top = (img.height - square_size) / 2
right = (img.width + square_size) / 2
bottom = (img.height + square_size) / 2
img_cropped = img.crop((left, top, right, bottom))
return img_cropped
def check_selected(selected_state):
if not selected_state:
raise gr.Error("You must select a LoRA")
def merge_incompatible_lora(full_path_lora, lora_scale):
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = lora_scale
lora_model, weights_sd = lora.create_network_from_weights(
multiplier,
full_path_lora,
pipe.vae,
pipe.text_encoder,
pipe.unet,
for_inference=True,
)
lora_model.merge_to(
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
)
del weights_sd
del lora_model
gc.collect()
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
global last_lora, last_merged, last_fused, pipe
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
for lora_list in lora_defaults:
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
prompt_full = lora_list["model"].get("prompt", None)
if(prompt_full):
prompt = prompt_full.replace("<subject>", prompt)
print("Prompt:", prompt)
#prepare face zoe
with torch.no_grad():
image_zoe = zoe(face_image)
width, height = face_kps.size
images = [face_kps, image_zoe.resize((height, width))]
#if(selected_state.index < 0):
# if(selected_state.index == -9999):
# selected_state.index = 0
# else:
# selected_state.index *= -1
#sdxl_loras = sdxl_loras_new
print("Selected State: ", selected_state.index)
print(sdxl_loras[selected_state.index]["repo"])
if negative == "":
negative = None
if not selected_state:
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
weight_name = sdxl_loras[selected_state.index]["weights"]
full_path_lora = state_dicts[repo_name]["saved_name"]
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
cross_attention_kwargs = None
print("Last LoRA: ", last_lora)
print("Current LoRA: ", repo_name)
print("Last fused: ", last_fused)
if last_lora != repo_name:
if(last_fused):
pipe.unfuse_lora()
pipe.unload_lora_weights()
pipe.load_lora_weights(loaded_state_dict)
pipe.fuse_lora()
last_fused = True
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
if(is_pivotal):
#Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
state_dict_embedding = load_file(embedding_path)
print(state_dict_embedding)
try:
pipe.unload_textual_inversion()
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
except:
pipe.unload_textual_inversion()
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
conditioning, pooled = compel(prompt)
if(negative):
negative_conditioning, negative_pooled = compel(negative)
else:
negative_conditioning, negative_pooled = None, None
image = pipe(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negative_pooled,
width=1024,
height=1024,
image_embeds=face_emb,
image=face_image,
strength=1-image_strength,
control_image=images,
num_inference_steps=20,
guidance_scale = guidance_scale,
controlnet_conditioning_scale=[face_strength, depth_control_scale],
).images[0]
last_lora = repo_name
gc.collect()
return image, gr.update(visible=True)
def shuffle_gallery(sdxl_loras):
random.shuffle(sdxl_loras)
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
def swap_gallery(order, sdxl_loras):
if(order == "random"):
return shuffle_gallery(sdxl_loras)
else:
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def deselect():
return gr.Gallery(selected_index=None)
with gr.Blocks(css="custom.css") as demo:
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new)
title = gr.HTML(
"""<h1>Face to All</h1>""",
elem_id="title",
)
selected_state = gr.State()
with gr.Row(elem_id="main_app"):
with gr.Group(elem_id="gallery_box"):
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil")
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
#new_gallery = gr.Gallery(
# label="New LoRAs",
# elem_id="gallery_new",
# columns=3,
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
gallery = gr.Gallery(
#value=[(item["image"], item["title"]) for item in sdxl_loras],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
height=784
)
with gr.Column():
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="A person", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
result = gr.Image(
interactive=False, label="Generated Image", elem_id="result-image"
)
face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
order_gallery.change(
fn=swap_gallery,
inputs=[order_gallery, gr_sdxl_loras],
outputs=[gallery, gr_sdxl_loras],
queue=False
)
gallery.select(
fn=update_selection,
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
queue=False,
show_progress=False
)
#new_gallery.select(
# fn=update_selection,
# inputs=[gr_sdxl_loras_new, gr.State(True)],
# outputs=[prompt_title, prompt, prompt, selected_state, gallery],
# queue=False,
# show_progress=False
#)
prompt.submit(
fn=check_selected,
inputs=[selected_state],
queue=False,
show_progress=False
).success(
fn=center_crop_image_as_square,
inputs=[photo],
outputs=[photo],
queue=False,
show_progress=False,
).success(
fn=run_lora,
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
outputs=[result, share_group],
)
button.click(
fn=check_selected,
inputs=[selected_state],
queue=False,
show_progress=False
).success(
fn=center_crop_image_as_square,
inputs=[photo],
outputs=[photo],
queue=False,
show_progress=False,
).success(
fn=run_lora,
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
outputs=[result, share_group],
)
share_button.click(None, [], [], js=share_js)
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js)
demo.queue(max_size=20)
demo.launch(share=True)