Spaces:
Runtime error
Runtime error
File size: 11,813 Bytes
b888bcf 6a4b741 5715833 6db905d 6a4b741 b888bcf f424501 6a4b741 b888bcf c4cd17d b888bcf c4cd17d 6db905d c4cd17d b888bcf b01ccb6 b888bcf 4604d71 6a4b741 5715833 b888bcf b626f76 6a4b741 e04dd59 f424501 6a4b741 f424501 5715833 c4cd17d 218550a c4cd17d 3b46a5d 114e952 980c828 114e952 49f1f69 efaf9fb 9ab148b 49f1f69 9ab148b a38ab5b 9ab148b 6db905d 49f1f69 6db905d b91379d 2ac5b77 5715833 834c4bb 5715833 24d15b9 5715833 8fe2fce be2828d c4cd17d be2828d 6f329ae c4cd17d be2828d c4cd17d be2828d c4cd17d be2828d e04dd59 be2828d 6db905d c4cd17d be2828d 6a4b741 e04dd59 5715833 b888bcf 5715833 6a4b741 b888bcf a521474 b888bcf 4c97d5d b888bcf 6a4b741 b888bcf 5715833 b888bcf 90a23cf 6397acd 5715833 6a4b741 5715833 b888bcf 24d15b9 b888bcf 8fe2fce c4cd17d 5715833 b888bcf 8fe2fce c4cd17d 5715833 b888bcf 5715833 b888bcf 8fe2fce f424501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import lora
from time import sleep
import copy
import json
import gc
with open("sdxl_loras.json", "r") as file:
data = json.load(file)
sdxl_loras = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None)
}
for item in data
]
print(sdxl_loras)
saved_names = [
hf_hub_download(item["repo"], item["weights"]) for item in sdxl_loras
]
device = "cuda" # replace this to `mps` if on a MacOS Silicon
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)
last_lora = ""
last_merged = False
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index]["repo"]
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
weight_name = sdxl_loras[selected_state.index]["weights"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
use_with_diffusers = f'''
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
## Use it with diffusers:
'''
if is_compatible:
use_with_diffusers += f'''
from diffusers import StableDiffusionXLPipeline
import torch
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to("cuda")
pipe.load_lora_weights("{lora_repo}", weight_name="{weight_name}")
prompt = "{instance_prompt}..."
lora_scale= 0.9
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale": lora_scale}}).images[0]
image.save("image.png")
'''
elif not is_pivotal:
use_with_diffusers += "This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with `bmaltais/kohya_ss` LoRA class, check out this [Google Colab](https://colab.research.google.com/drive/14aEJsKdEQ9_kyfsiV6JDok799kxPul0j )"
else:
use_with_diffusers += f"This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with sdxl-cog `TokenEmbeddingsHandler` class, check out the [model repo](https://huggingface.co/{lora_repo}#inference-with-🧨-diffusers)"
use_with_uis = f'''
## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111:
### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo}/resolve/main/{weight_name})
- [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras)
- [SD.Next guide](https://github.com/vladmandic/automatic)
- [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/)
'''
return (
updated_text,
instance_prompt,
gr.update(placeholder=new_placeholder),
selected_state,
use_with_diffusers,
use_with_uis,
)
def check_selected(selected_state):
if not selected_state:
raise gr.Error("You must select a LoRA")
def merge_incompatible_lora(full_path_lora, lora_scale):
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = lora_scale
lora_model, weights_sd = lora.create_network_from_weights(
multiplier,
full_path_lora,
pipe.vae,
pipe.text_encoder,
pipe.unet,
for_inference=True,
)
lora_model.merge_to(
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
)
del weights_sd
del lora_model
gc.collect()
def run_lora(prompt, negative, lora_scale, selected_state):
global last_lora, last_merged, pipe
if negative == "":
negative = None
if not selected_state:
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
weight_name = sdxl_loras[selected_state.index]["weights"]
full_path_lora = saved_names[selected_state.index]
cross_attention_kwargs = None
if last_lora != repo_name:
if last_merged:
del pipe
gc.collect()
pipe = copy.deepcopy(original_pipe)
pipe.to(device)
else:
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
if is_compatible:
pipe.load_lora_weights(full_path_lora)
cross_attention_kwargs = {"scale": lora_scale}
else:
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
if(is_pivotal):
pipe.load_lora_weights(full_path_lora)
cross_attention_kwargs = {"scale": lora_scale}
#Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)
else:
merge_incompatible_lora(full_path_lora, lora_scale)
last_merged = True
image = pipe(
prompt=prompt,
negative_prompt=negative,
width=768,
height=768,
num_inference_steps=20,
guidance_scale=7.5,
cross_attention_kwargs=cross_attention_kwargs,
).images[0]
last_lora = repo_name
gc.collect()
return image, gr.update(visible=True)
with gr.Blocks(css="custom.css") as demo:
title = gr.HTML(
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
elem_id="title",
)
selected_state = gr.State()
with gr.Row():
gallery = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Column():
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
result = gr.Image(
interactive=False, label="Generated Image", elem_id="result-image"
)
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
with gr.Column(elem_id="extra_info"):
with gr.Accordion(
"Use it with: 🧨 diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111",
open=False,
elem_id="accordion",
):
with gr.Row():
use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""")
use_uis = gr.Markdown()
with gr.Accordion("Submit a LoRA! 📥", open=False):
submit_title = gr.Markdown(
"### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗"
)
with gr.Box(elem_id="soon"):
submit_source = gr.Radio(
["Hugging Face", "CivitAI"],
label="LoRA source",
value="Hugging Face",
)
with gr.Row():
submit_source_hf = gr.Textbox(
label="Hugging Face Model Repo",
info="In the format `username/model_id`",
)
submit_safetensors_hf = gr.Textbox(
label="Safetensors filename",
info="The filename `*.safetensors` in the model repo",
)
with gr.Row():
submit_trigger_word_hf = gr.Textbox(label="Trigger word")
submit_image = gr.Image(
label="Example image (optional if the repo already contains images)"
)
submit_button = gr.Button("Submit!")
submit_disclaimer = gr.Markdown(
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
)
gallery.select(
update_selection,
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
queue=False,
show_progress=False,
)
prompt.submit(
fn=check_selected,
inputs=[selected_state],
queue=False,
show_progress=False
).success(
fn=run_lora,
inputs=[prompt, negative, weight, selected_state],
outputs=[result, share_group],
)
button.click(
fn=check_selected,
inputs=[selected_state],
queue=False,
show_progress=False
).success(
fn=run_lora,
inputs=[prompt, negative, weight, selected_state],
outputs=[result, share_group],
)
share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=20)
demo.launch() |