Spaces:
Running
Running
Commit
·
0cb2e17
1
Parent(s):
2ad01cf
update
Browse files- gradio_demo/app.py +39 -35
gradio_demo/app.py
CHANGED
@@ -63,41 +63,6 @@ else:
|
|
63 |
device = "cpu"
|
64 |
torch_dtype = torch.float32
|
65 |
|
66 |
-
# Load pretrained models.
|
67 |
-
print("Initializing pipeline...")
|
68 |
-
pipe = InstantIRPipeline.from_pretrained(
|
69 |
-
sdxl_repo_id,
|
70 |
-
torch_dtype=torch_dtype,
|
71 |
-
)
|
72 |
-
|
73 |
-
# Image prompt projector.
|
74 |
-
print("Loading LQ-Adapter...")
|
75 |
-
load_adapter_to_pipe(
|
76 |
-
pipe,
|
77 |
-
f"{instantir_path}/adapter.pt",
|
78 |
-
dinov2_repo_id,
|
79 |
-
)
|
80 |
-
|
81 |
-
# Prepare previewer
|
82 |
-
lora_alpha = pipe.prepare_previewers(instantir_path)
|
83 |
-
print(f"use lora alpha {lora_alpha}")
|
84 |
-
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
|
85 |
-
print(f"use lora alpha {lora_alpha}")
|
86 |
-
pipe.to(device=device, dtype=torch_dtype)
|
87 |
-
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
|
88 |
-
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
89 |
-
|
90 |
-
# Load weights.
|
91 |
-
print("Loading checkpoint...")
|
92 |
-
aggregator_state_dict = torch.load(
|
93 |
-
f"{instantir_path}/aggregator.pt",
|
94 |
-
map_location="cpu"
|
95 |
-
)
|
96 |
-
pipe.aggregator.load_state_dict(aggregator_state_dict, strict=True)
|
97 |
-
pipe.aggregator.to(device=device, dtype=torch_dtype)
|
98 |
-
|
99 |
-
print("******loaded")
|
100 |
-
|
101 |
MAX_SEED = np.iinfo(np.int32).max
|
102 |
MAX_IMAGE_SIZE = 1024
|
103 |
|
@@ -129,6 +94,44 @@ def show_final_preview(preview_row):
|
|
129 |
def instantir_restore(
|
130 |
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
|
131 |
creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if creative_restoration:
|
133 |
if "lcm" not in pipe.unet.active_adapters():
|
134 |
pipe.unet.set_adapter('lcm')
|
@@ -177,6 +180,7 @@ def instantir_restore(
|
|
177 |
for i, preview_img in enumerate(out[1]):
|
178 |
preview_img.append(f"preview_{i}")
|
179 |
|
|
|
180 |
gc.collect()
|
181 |
print(f"TORCH={torch}")
|
182 |
if torch.cuda.is_available():
|
|
|
63 |
device = "cpu"
|
64 |
torch_dtype = torch.float32
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
MAX_SEED = np.iinfo(np.int32).max
|
67 |
MAX_IMAGE_SIZE = 1024
|
68 |
|
|
|
94 |
def instantir_restore(
|
95 |
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
|
96 |
creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0, progress=gr.Progress(track_tqdm=True)):
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
# Load pretrained models.
|
101 |
+
print("Initializing pipeline...")
|
102 |
+
pipe = InstantIRPipeline.from_pretrained(
|
103 |
+
sdxl_repo_id,
|
104 |
+
torch_dtype=torch_dtype,
|
105 |
+
)
|
106 |
+
|
107 |
+
# Image prompt projector.
|
108 |
+
print("Loading LQ-Adapter...")
|
109 |
+
load_adapter_to_pipe(
|
110 |
+
pipe,
|
111 |
+
f"{instantir_path}/adapter.pt",
|
112 |
+
dinov2_repo_id,
|
113 |
+
)
|
114 |
+
|
115 |
+
# Prepare previewer
|
116 |
+
lora_alpha = pipe.prepare_previewers(instantir_path)
|
117 |
+
print(f"use lora alpha {lora_alpha}")
|
118 |
+
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
|
119 |
+
print(f"use lora alpha {lora_alpha}")
|
120 |
+
pipe.to(device=device, dtype=torch_dtype)
|
121 |
+
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
|
122 |
+
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
123 |
+
|
124 |
+
# Load weights.
|
125 |
+
print("Loading checkpoint...")
|
126 |
+
aggregator_state_dict = torch.load(
|
127 |
+
f"{instantir_path}/aggregator.pt",
|
128 |
+
map_location="cpu"
|
129 |
+
)
|
130 |
+
pipe.aggregator.load_state_dict(aggregator_state_dict, strict=True)
|
131 |
+
pipe.aggregator.to(device=device, dtype=torch_dtype)
|
132 |
+
|
133 |
+
print("******loaded")
|
134 |
+
|
135 |
if creative_restoration:
|
136 |
if "lcm" not in pipe.unet.active_adapters():
|
137 |
pipe.unet.set_adapter('lcm')
|
|
|
180 |
for i, preview_img in enumerate(out[1]):
|
181 |
preview_img.append(f"preview_{i}")
|
182 |
|
183 |
+
del pipe
|
184 |
gc.collect()
|
185 |
print(f"TORCH={torch}")
|
186 |
if torch.cuda.is_available():
|