Spaces:
Running
Running
import torch | |
def tokenize_prompt(tokenizer, prompt): | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
return text_input_ids | |
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt | |
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): | |
prompt_embeds_list = [] | |
for i, text_encoder in enumerate(text_encoders): | |
if tokenizers is not None: | |
tokenizer = tokenizers[i] | |
text_input_ids = tokenize_prompt(tokenizer, prompt) | |
else: | |
assert text_input_ids_list is not None | |
text_input_ids = text_input_ids_list[i] | |
prompt_embeds = text_encoder( | |
text_input_ids.to(text_encoder.device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
return prompt_embeds, pooled_prompt_embeds | |
def add_tokens(tokenizers, tokens, text_encoders): | |
new_token_indices = {} | |
for idx, tokenizer in enumerate(tokenizers): | |
for token in tokens: | |
num_added_tokens = tokenizer.add_tokens(token) | |
if num_added_tokens == 0: | |
raise ValueError( | |
f"The tokenizer already contains the token {token}. Please pass a different" | |
" `placeholder_token` that is not already in the tokenizer." | |
) | |
new_token_indices[f"{idx}_{token}"] = num_added_tokens | |
# resize embedding layers to avoid crash. We will never actually use these. | |
text_encoders[idx].resize_token_embeddings(len(tokenizer), pad_to_multiple_of=128) | |
return new_token_indices | |
def patch_embedding_forward(embedding_layer, new_tokens, new_embeddings): | |
def new_forward(input): | |
embedded_text = torch.nn.functional.embedding( | |
input, embedding_layer.weight, embedding_layer.padding_idx, embedding_layer.max_norm, | |
embedding_layer.norm_type, embedding_layer.scale_grad_by_freq, embedding_layer.sparse) | |
replace_indices = (input == new_tokens) | |
if torch.count_nonzero(replace_indices) > 0: | |
embedded_text[replace_indices] = new_embeddings | |
return embedded_text | |
embedding_layer.forward = new_forward |