Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
""" | |
Created on Tue Jul 11 06:54:28 2017 | |
@author: zhaoyafei | |
""" | |
import numpy as np | |
from numpy.linalg import inv, norm, lstsq | |
from numpy.linalg import matrix_rank as rank | |
class MatlabCp2tormException(Exception): | |
def __str__(self): | |
return 'In File {}:{}'.format( | |
__file__, super.__str__(self)) | |
def tformfwd(trans, uv): | |
""" | |
Function: | |
---------- | |
apply affine transform 'trans' to uv | |
Parameters: | |
---------- | |
@trans: 3x3 np.array | |
transform matrix | |
@uv: Kx2 np.array | |
each row is a pair of coordinates (x, y) | |
Returns: | |
---------- | |
@xy: Kx2 np.array | |
each row is a pair of transformed coordinates (x, y) | |
""" | |
uv = np.hstack(( | |
uv, np.ones((uv.shape[0], 1)) | |
)) | |
xy = np.dot(uv, trans) | |
xy = xy[:, 0:-1] | |
return xy | |
def tforminv(trans, uv): | |
""" | |
Function: | |
---------- | |
apply the inverse of affine transform 'trans' to uv | |
Parameters: | |
---------- | |
@trans: 3x3 np.array | |
transform matrix | |
@uv: Kx2 np.array | |
each row is a pair of coordinates (x, y) | |
Returns: | |
---------- | |
@xy: Kx2 np.array | |
each row is a pair of inverse-transformed coordinates (x, y) | |
""" | |
Tinv = inv(trans) | |
xy = tformfwd(Tinv, uv) | |
return xy | |
def findNonreflectiveSimilarity(uv, xy, options=None): | |
options = {'K': 2} | |
K = options['K'] | |
M = xy.shape[0] | |
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |
# print('--->x, y:\n', x, y | |
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1)))) | |
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1)))) | |
X = np.vstack((tmp1, tmp2)) | |
# print('--->X.shape: ', X.shape | |
# print('X:\n', X | |
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector | |
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector | |
U = np.vstack((u, v)) | |
# print('--->U.shape: ', U.shape | |
# print('U:\n', U | |
# We know that X * r = U | |
if rank(X) >= 2 * K: | |
r, _, _, _ = lstsq(X, U) | |
r = np.squeeze(r) | |
else: | |
raise Exception('cp2tform:twoUniquePointsReq') | |
# print('--->r:\n', r | |
sc = r[0] | |
ss = r[1] | |
tx = r[2] | |
ty = r[3] | |
Tinv = np.array([ | |
[sc, -ss, 0], | |
[ss, sc, 0], | |
[tx, ty, 1] | |
]) | |
# print('--->Tinv:\n', Tinv | |
T = inv(Tinv) | |
# print('--->T:\n', T | |
T[:, 2] = np.array([0, 0, 1]) | |
return T, Tinv | |
def findSimilarity(uv, xy, options=None): | |
options = {'K': 2} | |
# uv = np.array(uv) | |
# xy = np.array(xy) | |
# Solve for trans1 | |
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options) | |
# Solve for trans2 | |
# manually reflect the xy data across the Y-axis | |
xyR = xy | |
xyR[:, 0] = -1 * xyR[:, 0] | |
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options) | |
# manually reflect the tform to undo the reflection done on xyR | |
TreflectY = np.array([ | |
[-1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1] | |
]) | |
trans2 = np.dot(trans2r, TreflectY) | |
# Figure out if trans1 or trans2 is better | |
xy1 = tformfwd(trans1, uv) | |
norm1 = norm(xy1 - xy) | |
xy2 = tformfwd(trans2, uv) | |
norm2 = norm(xy2 - xy) | |
if norm1 <= norm2: | |
return trans1, trans1_inv | |
else: | |
trans2_inv = inv(trans2) | |
return trans2, trans2_inv | |
def get_similarity_transform(src_pts, dst_pts, reflective=True): | |
""" | |
Function: | |
---------- | |
Find Similarity Transform Matrix 'trans': | |
u = src_pts[:, 0] | |
v = src_pts[:, 1] | |
x = dst_pts[:, 0] | |
y = dst_pts[:, 1] | |
[x, y, 1] = [u, v, 1] * trans | |
Parameters: | |
---------- | |
@src_pts: Kx2 np.array | |
source points, each row is a pair of coordinates (x, y) | |
@dst_pts: Kx2 np.array | |
destination points, each row is a pair of transformed | |
coordinates (x, y) | |
@reflective: True or False | |
if True: | |
use reflective similarity transform | |
else: | |
use non-reflective similarity transform | |
Returns: | |
---------- | |
@trans: 3x3 np.array | |
transform matrix from uv to xy | |
trans_inv: 3x3 np.array | |
inverse of trans, transform matrix from xy to uv | |
""" | |
if reflective: | |
trans, trans_inv = findSimilarity(src_pts, dst_pts) | |
else: | |
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts) | |
return trans, trans_inv | |
def cvt_tform_mat_for_cv2(trans): | |
""" | |
Function: | |
---------- | |
Convert Transform Matrix 'trans' into 'cv2_trans' which could be | |
directly used by cv2.warpAffine(): | |
u = src_pts[:, 0] | |
v = src_pts[:, 1] | |
x = dst_pts[:, 0] | |
y = dst_pts[:, 1] | |
[x, y].T = cv_trans * [u, v, 1].T | |
Parameters: | |
---------- | |
@trans: 3x3 np.array | |
transform matrix from uv to xy | |
Returns: | |
---------- | |
@cv2_trans: 2x3 np.array | |
transform matrix from src_pts to dst_pts, could be directly used | |
for cv2.warpAffine() | |
""" | |
cv2_trans = trans[:, 0:2].T | |
return cv2_trans | |
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True): | |
""" | |
Function: | |
---------- | |
Find Similarity Transform Matrix 'cv2_trans' which could be | |
directly used by cv2.warpAffine(): | |
u = src_pts[:, 0] | |
v = src_pts[:, 1] | |
x = dst_pts[:, 0] | |
y = dst_pts[:, 1] | |
[x, y].T = cv_trans * [u, v, 1].T | |
Parameters: | |
---------- | |
@src_pts: Kx2 np.array | |
source points, each row is a pair of coordinates (x, y) | |
@dst_pts: Kx2 np.array | |
destination points, each row is a pair of transformed | |
coordinates (x, y) | |
reflective: True or False | |
if True: | |
use reflective similarity transform | |
else: | |
use non-reflective similarity transform | |
Returns: | |
---------- | |
@cv2_trans: 2x3 np.array | |
transform matrix from src_pts to dst_pts, could be directly used | |
for cv2.warpAffine() | |
""" | |
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective) | |
cv2_trans = cvt_tform_mat_for_cv2(trans) | |
return cv2_trans | |
if __name__ == '__main__': | |
""" | |
u = [0, 6, -2] | |
v = [0, 3, 5] | |
x = [-1, 0, 4] | |
y = [-1, -10, 4] | |
# In Matlab, run: | |
# | |
# uv = [u'; v']; | |
# xy = [x'; y']; | |
# tform_sim=cp2tform(uv,xy,'similarity'); | |
# | |
# trans = tform_sim.tdata.T | |
# ans = | |
# -0.0764 -1.6190 0 | |
# 1.6190 -0.0764 0 | |
# -3.2156 0.0290 1.0000 | |
# trans_inv = tform_sim.tdata.Tinv | |
# ans = | |
# | |
# -0.0291 0.6163 0 | |
# -0.6163 -0.0291 0 | |
# -0.0756 1.9826 1.0000 | |
# xy_m=tformfwd(tform_sim, u,v) | |
# | |
# xy_m = | |
# | |
# -3.2156 0.0290 | |
# 1.1833 -9.9143 | |
# 5.0323 2.8853 | |
# uv_m=tforminv(tform_sim, x,y) | |
# | |
# uv_m = | |
# | |
# 0.5698 1.3953 | |
# 6.0872 2.2733 | |
# -2.6570 4.3314 | |
""" | |
u = [0, 6, -2] | |
v = [0, 3, 5] | |
x = [-1, 0, 4] | |
y = [-1, -10, 4] | |
uv = np.array((u, v)).T | |
xy = np.array((x, y)).T | |
print('\n--->uv:') | |
print(uv) | |
print('\n--->xy:') | |
print(xy) | |
trans, trans_inv = get_similarity_transform(uv, xy) | |
print('\n--->trans matrix:') | |
print(trans) | |
print('\n--->trans_inv matrix:') | |
print(trans_inv) | |
print('\n---> apply transform to uv') | |
print('\nxy_m = uv_augmented * trans') | |
uv_aug = np.hstack(( | |
uv, np.ones((uv.shape[0], 1)) | |
)) | |
xy_m = np.dot(uv_aug, trans) | |
print(xy_m) | |
print('\nxy_m = tformfwd(trans, uv)') | |
xy_m = tformfwd(trans, uv) | |
print(xy_m) | |
print('\n---> apply inverse transform to xy') | |
print('\nuv_m = xy_augmented * trans_inv') | |
xy_aug = np.hstack(( | |
xy, np.ones((xy.shape[0], 1)) | |
)) | |
uv_m = np.dot(xy_aug, trans_inv) | |
print(uv_m) | |
print('\nuv_m = tformfwd(trans_inv, xy)') | |
uv_m = tformfwd(trans_inv, xy) | |
print(uv_m) | |
uv_m = tforminv(trans, xy) | |
print('\nuv_m = tforminv(trans, xy)') | |
print(uv_m) | |