Spaces:
Running
Running
File size: 15,039 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import argparse
import os
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Train Consistency Encoder.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
# parser.add_argument(
# "--instance_data_dir",
# type=str,
# required=True,
# help=("A folder containing the training data. "),
# )
parser.add_argument(
"--data_config_path",
type=str,
required=True,
help=("A folder containing the training data. "),
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--image_column",
type=str,
default="image",
help="The column of the dataset containing the target image. By "
"default, the standard Image Dataset maps out 'file_name' "
"to 'image'.",
)
parser.add_argument(
"--caption_column",
type=str,
default=None,
help="The column of the dataset containing the instance prompt for each image",
)
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="A prompt that is used during validation to verify that the model is learning.",
)
parser.add_argument(
"--num_train_vis_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_vis_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--train_vis_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--vis_lcm",
type=bool,
default=True,
help=(
"Also log results of LCM inference",
),
)
parser.add_argument(
"--output_dir",
type=str,
default="lora-dreambooth-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet")
parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features")
parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter")
parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.")
parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism")
parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)")
parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers")
parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided")
parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?")
# related to CFG:
parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training")
parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training")
parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training")
parser.add_argument(
"--resolution",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--crops_coords_top_left_h",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--crops_coords_top_left_w",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=5,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--rank",
type=int,
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--pretrained_lcm_lora_path",
type=str,
default="latent-consistency/lcm-lora-sdxl",
help=("Path for lcm lora pretrained"),
)
parser.add_argument(
"--losses_config_path",
type=str,
required=True,
help=("A yaml file containing losses to use and their weights."),
)
parser.add_argument(
"--lcm_every_k_steps",
type=int,
default=-1,
help="How often to run lcm. If -1, lcm is not run."
)
parser.add_argument(
"--lcm_batch_size",
type=int,
default=1,
help="Batch size for lcm."
)
parser.add_argument(
"--lcm_max_timestep",
type=int,
default=1000,
help="Max timestep to use with LCM."
)
parser.add_argument(
"--lcm_sample_scale_every_k_steps",
type=int,
default=-1,
help="How often to change lcm scale. If -1, scale is fixed at 1."
)
parser.add_argument(
"--lcm_min_scale",
type=float,
default=0.1,
help="When sampling lcm scale, the minimum scale to use."
)
parser.add_argument(
"--scale_lcm_by_max_step",
action="store_true",
help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration"
)
parser.add_argument(
"--lcm_sample_full_lcm_prob",
type=float,
default=0.2,
help="When sampling lcm scale, the probability of using full lcm (scale of 1)."
)
parser.add_argument(
"--run_on_cpu",
action="store_true",
help="whether to run on cpu or not"
)
parser.add_argument(
"--experiment_name",
type=str,
help=("A short description of the experiment to add to the wand run log. "),
)
parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora")
parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
args.optimizer = "AdamW"
return args |