Spaces:
Running
Running
File size: 21,239 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import torch
import wandb
import cv2
import torch.nn.functional as F
import numpy as np
from facenet_pytorch import MTCNN
from torchvision import transforms
from dreamsim import dreamsim
from einops import rearrange
import kornia.augmentation as K
import lpips
from pretrained_models.arcface import Backbone
from utils.vis_utils import add_text_to_image
from utils.utils import extract_faces_and_landmarks
import clip
class Loss():
"""
General purpose loss class.
Mainly handles dtype and visualize_every_k.
keeps current iteration of loss, mainly for visualization purposes.
"""
def __init__(self, visualize_every_k=-1, dtype=torch.float32, accelerator=None, **kwargs):
self.visualize_every_k = visualize_every_k
self.iteration = -1
self.dtype=dtype
self.accelerator = accelerator
def __call__(self, **kwargs):
self.iteration += 1
return self.forward(**kwargs)
class L1Loss(Loss):
"""
Simple L1 loss between predicted_pixel_values and pixel_values
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
**kwargs
) -> torch.Tensor:
return F.l1_loss(predict, target, reduction="mean")
class DreamSIMLoss(Loss):
"""DreamSIM loss between predicted_pixel_values and pixel_values.
DreamSIM is similar to LPIPS (https://dreamsim-nights.github.io/) but is trained on more human defined similarity dataset
DreamSIM expects an RGB image of size 224x224 and values between 0 and 1. So we need to normalize the input images to 0-1 range and resize them to 224x224.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, device: str='cuda:0', **kwargs):
super().__init__(**kwargs)
self.model, _ = dreamsim(pretrained=True, device=device)
self.model.to(dtype=self.dtype, device=device)
self.model = self.accelerator.prepare(self.model)
self.transforms = transforms.Compose([
transforms.Lambda(lambda x: (x + 1) / 2),
transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC)])
def forward(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
**kwargs,
) -> torch.Tensor:
predicted_pixel_values.to(dtype=self.dtype)
encoder_pixel_values.to(dtype=self.dtype)
return self.model(self.transforms(predicted_pixel_values), self.transforms(encoder_pixel_values)).mean()
class LPIPSLoss(Loss):
"""LPIPS loss between predicted_pixel_values and pixel_values.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model = lpips.LPIPS(net='vgg')
self.model.to(dtype=self.dtype, device=self.accelerator.device)
self.model = self.accelerator.prepare(self.model)
def forward(self, predict, target, **kwargs):
predict.to(dtype=self.dtype)
target.to(dtype=self.dtype)
return self.model(predict, target).mean()
class LCMVisualization(Loss):
"""Dummy loss used to visualize the LCM outputs
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
pixel_values (torch.Tensor): The input image to the decoder
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def forward(
self,
predicted_pixel_values: torch.Tensor,
pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
timesteps: torch.Tensor,
**kwargs,
) -> None:
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
predicted_pixel_values = rearrange(predicted_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
pixel_values = rearrange(pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
encoder_pixel_values = rearrange(encoder_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
image = np.hstack([encoder_pixel_values, pixel_values, predicted_pixel_values])
for tracker in self.accelerator.trackers:
if tracker.name == 'wandb':
tracker.log({"TrainVisualization": wandb.Image(image, caption=f"Encoder Input Image, Decoder Input Image, Predicted LCM Image. Timesteps {timesteps.cpu().tolist()}")})
return torch.tensor(0.0)
class L2Loss(Loss):
"""
Regular diffusion loss between predicted noise and target noise.
Args:
predicted_noise (torch.Tensor): noise predicted by the diffusion model
target_noise (torch.Tensor): actual noise added to the image.
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights: torch.Tensor = None,
**kwargs
) -> torch.Tensor:
if weights is not None:
loss = (predict.float() - target.float()).pow(2) * weights
return loss.mean()
return F.mse_loss(predict.float(), target.float(), reduction="mean")
class HuberLoss(Loss):
"""Huber loss between predicted_pixel_values and pixel_values.
Args:
predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
encoder_pixel_values (torch.Tesnor): The input image to the encoder
"""
def __init__(self, huber_c=0.001, **kwargs):
super().__init__(**kwargs)
self.huber_c = huber_c
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights: torch.Tensor = None,
**kwargs
) -> torch.Tensor:
loss = torch.sqrt((predict.float() - target.float()) ** 2 + self.huber_c**2) - self.huber_c
if weights is not None:
return (loss * weights).mean()
return loss.mean()
class WeightedNoiseLoss(Loss):
"""
Weighted diffusion loss between predicted noise and target noise.
Args:
predicted_noise (torch.Tensor): noise predicted by the diffusion model
target_noise (torch.Tensor): actual noise added to the image.
loss_batch_weights (torch.Tensor): weighting for each batch item. Can be used to e.g. zero-out loss for InstantID training if keypoint extraction fails.
"""
def forward(
self,
predict: torch.Tensor,
target: torch.Tensor,
weights,
**kwargs
) -> torch.Tensor:
return F.mse_loss(predict.float() * weights, target.float() * weights, reduction="mean")
class IDLoss(Loss):
"""
Use pretrained facenet model to extract features from the face of the predicted image and target image.
Facenet expects 112x112 images, so we crop the face using MTCNN and resize it to 112x112.
Then we use the cosine similarity between the features to calculate the loss. (The cosine similarity is 1 - cosine distance).
Also notice that the outputs of facenet are normalized so the dot product is the same as cosine distance.
"""
def __init__(self, pretrained_arcface_path: str, skip_not_found=True, **kwargs):
super().__init__(**kwargs)
assert pretrained_arcface_path is not None, "please pass `pretrained_arcface_path` in the losses config. You can download the pretrained model from "\
"https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing"
self.mtcnn = MTCNN(device=self.accelerator.device)
self.mtcnn.forward = self.mtcnn.detect
self.facenet_input_size = 112 # Has to be 112, can't find weights for 224 size.
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load(pretrained_arcface_path))
self.face_pool = torch.nn.AdaptiveAvgPool2d((self.facenet_input_size, self.facenet_input_size))
self.facenet.requires_grad_(False)
self.facenet.eval()
self.facenet.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
self.face_pool.to(device=self.accelerator.device, dtype=self.dtype) # not implemented for half precision
self.visualization_resize = transforms.Resize((self.facenet_input_size, self.facenet_input_size), interpolation=transforms.InterpolationMode.BICUBIC)
self.reference_facial_points = np.array([[38.29459953, 51.69630051],
[72.53179932, 51.50139999],
[56.02519989, 71.73660278],
[41.54930115, 92.3655014],
[70.72990036, 92.20410156]
]) # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
self.facenet, self.face_pool, self.mtcnn = self.accelerator.prepare(self.facenet, self.face_pool, self.mtcnn)
self.skip_not_found = skip_not_found
def extract_feats(self, x: torch.Tensor):
"""
Extract features from the face of the image using facenet model.
"""
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
timesteps: torch.Tensor,
**kwargs
):
encoder_pixel_values = encoder_pixel_values.to(dtype=self.dtype)
predicted_pixel_values = predicted_pixel_values.to(dtype=self.dtype)
predicted_pixel_values_face, predicted_invalid_indices = extract_faces_and_landmarks(predicted_pixel_values, mtcnn=self.mtcnn)
with torch.no_grad():
encoder_pixel_values_face, source_invalid_indices = extract_faces_and_landmarks(encoder_pixel_values, mtcnn=self.mtcnn)
if self.skip_not_found:
valid_indices = []
for i in range(predicted_pixel_values.shape[0]):
if i not in predicted_invalid_indices and i not in source_invalid_indices:
valid_indices.append(i)
else:
valid_indices = list(range(predicted_pixel_values))
valid_indices = torch.tensor(valid_indices).to(device=predicted_pixel_values.device)
if len(valid_indices) == 0:
loss = (predicted_pixel_values_face * 0.0).mean() # It's done this way so the `backwards` will delete the computation graph of the predicted_pixel_values.
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
return loss
with torch.no_grad():
pixel_values_feats = self.extract_feats(encoder_pixel_values_face[valid_indices])
predicted_pixel_values_feats = self.extract_feats(predicted_pixel_values_face[valid_indices])
loss = 1 - torch.einsum("bi,bi->b", pixel_values_feats, predicted_pixel_values_feats)
if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
return loss.mean()
def visualize(
self,
predicted_pixel_values: torch.Tensor,
encoder_pixel_values: torch.Tensor,
predicted_pixel_values_face: torch.Tensor,
encoder_pixel_values_face: torch.Tensor,
timesteps: torch.Tensor,
valid_indices: torch.Tensor,
loss: torch.Tensor,
) -> None:
small_predicted_pixel_values = (rearrange(self.visualization_resize(predicted_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy())
small_pixle_values = rearrange(self.visualization_resize(encoder_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy()
small_predicted_pixel_values_face = rearrange(self.visualization_resize(predicted_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
small_pixle_values_face = rearrange(self.visualization_resize(encoder_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
small_predicted_pixel_values = add_text_to_image(((small_predicted_pixel_values * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Images", add_below=False)
small_pixle_values = add_text_to_image(((small_pixle_values * 0.5 + 0.5) * 255).astype(np.uint8), "Target Images", add_below=False)
small_predicted_pixel_values_face = add_text_to_image(((small_predicted_pixel_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Faces", add_below=False)
small_pixle_values_face = add_text_to_image(((small_pixle_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Target Faces", add_below=False)
final_image = np.hstack([small_predicted_pixel_values, small_pixle_values, small_predicted_pixel_values_face, small_pixle_values_face])
for tracker in self.accelerator.trackers:
if tracker.name == 'wandb':
tracker.log({"IDLoss Visualization": wandb.Image(final_image, caption=f"loss: {loss.cpu().tolist()} timesteps: {timesteps.cpu().tolist()}, valid_indices: {valid_indices.cpu().tolist()}")})
class ImageAugmentations(torch.nn.Module):
# Standard image augmentations used for CLIP loss to discourage adversarial outputs.
def __init__(self, output_size, augmentations_number, p=0.7):
super().__init__()
self.output_size = output_size
self.augmentations_number = augmentations_number
self.augmentations = torch.nn.Sequential(
K.RandomAffine(degrees=15, translate=0.1, p=p, padding_mode="border"), # type: ignore
K.RandomPerspective(0.7, p=p),
)
self.avg_pool = torch.nn.AdaptiveAvgPool2d((self.output_size, self.output_size))
self.device = None
def forward(self, input):
"""Extents the input batch with augmentations
If the input is consists of images [I1, I2] the extended augmented output
will be [I1_resized, I2_resized, I1_aug1, I2_aug1, I1_aug2, I2_aug2 ...]
Args:
input ([type]): input batch of shape [batch, C, H, W]
Returns:
updated batch: of shape [batch * augmentations_number, C, H, W]
"""
# We want to multiply the number of images in the batch in contrast to regular augmantations
# that do not change the number of samples in the batch)
resized_images = self.avg_pool(input)
resized_images = torch.tile(resized_images, dims=(self.augmentations_number, 1, 1, 1))
batch_size = input.shape[0]
# We want at least one non augmented image
non_augmented_batch = resized_images[:batch_size]
augmented_batch = self.augmentations(resized_images[batch_size:])
updated_batch = torch.cat([non_augmented_batch, augmented_batch], dim=0)
return updated_batch
class CLIPLoss(Loss):
def __init__(self, augmentations_number: int = 4, **kwargs):
super().__init__(**kwargs)
self.clip_model, clip_preprocess = clip.load("ViT-B/16", device=self.accelerator.device, jit=False)
self.clip_model.device = None
self.clip_model.eval().requires_grad_(False)
self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions
clip_preprocess.transforms[4:]) # + skip convert PIL to tensor
self.clip_size = self.clip_model.visual.input_resolution
self.clip_normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
)
self.image_augmentations = ImageAugmentations(output_size=self.clip_size,
augmentations_number=augmentations_number)
self.clip_model, self.image_augmentations = self.accelerator.prepare(self.clip_model, self.image_augmentations)
def forward(self, decoder_prompts, predicted_pixel_values: torch.Tensor, **kwargs) -> torch.Tensor:
if not isinstance(decoder_prompts, list):
decoder_prompts = [decoder_prompts]
tokens = clip.tokenize(decoder_prompts).to(predicted_pixel_values.device)
image = self.preprocess(predicted_pixel_values)
logits_per_image, _ = self.clip_model(image, tokens)
logits_per_image = torch.diagonal(logits_per_image)
return (1. - logits_per_image / 100).mean()
class DINOLoss(Loss):
def __init__(
self,
dino_model,
dino_preprocess,
output_hidden_states: bool = False,
center_momentum: float = 0.9,
student_temp: float = 0.1,
teacher_temp: float = 0.04,
warmup_teacher_temp: float = 0.04,
warmup_teacher_temp_epochs: int = 30,
**kwargs):
super().__init__(**kwargs)
self.dino_model = dino_model
self.output_hidden_states = output_hidden_states
self.rescale_factor = dino_preprocess.rescale_factor
# Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
self.preprocess = transforms.Compose(
[
transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
transforms.Resize(size=256),
transforms.CenterCrop(size=(224, 224)),
transforms.Normalize(mean=dino_preprocess.image_mean, std=dino_preprocess.image_std)
]
)
self.student_temp = student_temp
self.teacher_temp = teacher_temp
self.center_momentum = center_momentum
self.center = torch.zeros(1, 257, 1024).to(self.accelerator.device, dtype=self.dtype)
# TODO: add temp, now fixed to 0.04
# we apply a warm up for the teacher temperature because
# a too high temperature makes the training instable at the beginning
# self.teacher_temp_schedule = np.concatenate((
# np.linspace(warmup_teacher_temp,
# teacher_temp, warmup_teacher_temp_epochs),
# np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
# ))
self.dino_model = self.accelerator.prepare(self.dino_model)
def forward(
self,
target: torch.Tensor,
predict: torch.Tensor,
weights: torch.Tensor = None,
**kwargs) -> torch.Tensor:
predict = self.preprocess(predict)
target = self.preprocess(target)
encoder_input = torch.cat([target, predict]).to(self.dino_model.device, dtype=self.dino_model.dtype)
if self.output_hidden_states:
raise ValueError("Output hidden states not supported for DINO loss.")
image_enc_hidden_states = self.dino_model(encoder_input, output_hidden_states=True).hidden_states[-2]
else:
image_enc_hidden_states = self.dino_model(encoder_input).last_hidden_state
teacher_output, student_output = image_enc_hidden_states.chunk(2, dim=0) # [B, 257, 1024]
student_out = student_output.float() / self.student_temp
# teacher centering and sharpening
# temp = self.teacher_temp_schedule[epoch]
temp = self.teacher_temp
teacher_out = F.softmax((teacher_output.float() - self.center) / temp, dim=-1)
teacher_out = teacher_out.detach()
loss = torch.sum(-teacher_out * F.log_softmax(student_out, dim=-1), dim=-1, keepdim=True)
# self.update_center(teacher_output)
if weights is not None:
loss = loss * weights
return loss.mean()
return loss.mean()
@torch.no_grad()
def update_center(self, teacher_output):
"""
Update center used for teacher output.
"""
batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
self.accelerator.reduce(batch_center, reduction="sum")
batch_center = batch_center / (len(teacher_output) * self.accelerator.num_processes)
# ema update
self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)
|