File size: 15,039 Bytes
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import os

def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Train Consistency Encoder.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    
    # parser.add_argument(
    #     "--instance_data_dir",
    #     type=str,
    #     required=True,
    #     help=("A folder containing the training data. "),
    # )

    parser.add_argument(
        "--data_config_path",
        type=str,
        required=True,
        help=("A folder containing the training data. "),
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )

    parser.add_argument(
        "--image_column",
        type=str,
        default="image",
        help="The column of the dataset containing the target image. By "
        "default, the standard Image Dataset maps out 'file_name' "
        "to 'image'.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default=None,
        help="The column of the dataset containing the instance prompt for each image",
    )

    parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")

    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
    )

    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_train_vis_images",
        type=int,
        default=2,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=2,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )

    parser.add_argument(
        "--validation_vis_steps",
        type=int,
        default=500,
        help=(
            "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )

    parser.add_argument(
        "--train_vis_steps",
        type=int,
        default=500,
        help=(
            "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )

    parser.add_argument(
        "--vis_lcm",
        type=bool,
        default=True,
        help=(
            "Also log results of LCM inference",
        ),
    )

    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state")

    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")

    parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet")
    parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features")
    parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter")
    parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.")
    parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism")
    parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)")
    parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers")
    parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided")

    parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?")

    # related to CFG:
    parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training")
    parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training")
    parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training")

    
    
    parser.add_argument(
        "--resolution",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )

    parser.add_argument(
        "--crops_coords_top_left_h",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )

    parser.add_argument(
        "--crops_coords_top_left_w",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )

    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )

    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )

    parser.add_argument("--num_train_epochs", type=int, default=1)

    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )

    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )

    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=5,
        help=("Max number of checkpoints to store."),
    )

    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )

    parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001)

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )

    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )

    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )

    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )

    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )

    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )

    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )

    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")

    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )

    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")

    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )

    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )

    parser.add_argument(
        "--report_to",
        type=str,
        default="wandb",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )

    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )

    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )

    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )

    parser.add_argument(
        "--pretrained_lcm_lora_path",
        type=str,
        default="latent-consistency/lcm-lora-sdxl",
        help=("Path for lcm lora pretrained"),
        )
    
    parser.add_argument(
        "--losses_config_path",
        type=str,
        required=True,
        help=("A yaml file containing losses to use and their weights."),
    )
    
    parser.add_argument(
        "--lcm_every_k_steps",
        type=int,
        default=-1,
        help="How often to run lcm. If -1, lcm is not run."
    )

    parser.add_argument(
        "--lcm_batch_size",
        type=int,
        default=1,
        help="Batch size for lcm."
    )
    parser.add_argument(
        "--lcm_max_timestep",
        type=int,
        default=1000,
        help="Max timestep to use with LCM."
    )

    parser.add_argument(
        "--lcm_sample_scale_every_k_steps",
        type=int,
        default=-1,
        help="How often to change lcm scale. If -1, scale is fixed at 1."
    )

    parser.add_argument(
        "--lcm_min_scale",
        type=float,
        default=0.1,
        help="When sampling lcm scale, the minimum scale to use."
    )

    parser.add_argument(
        "--scale_lcm_by_max_step",
        action="store_true",
        help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration"
    )

    parser.add_argument(
        "--lcm_sample_full_lcm_prob",
        type=float,
        default=0.2,
        help="When sampling lcm scale, the probability of using full lcm (scale of 1)."
    )

    parser.add_argument(
        "--run_on_cpu",
        action="store_true",
        help="whether to run on cpu or not"
    )

    parser.add_argument(
        "--experiment_name",
        type=str,
        help=("A short description of the experiment to add to the wand run log. "),
    )
    parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora")

    parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora")


    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    args.optimizer = "AdamW"

    return args