Spaces:
Running
Running
File size: 34,694 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
# Modified from minSDXL by Simo Ryu:
# https://github.com/cloneofsimo/minSDXL ,
# which is in turn modified from the original code of:
# https://github.com/huggingface/diffusers
# So has APACHE 2.0 license
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import inspect
from collections import namedtuple
from torch.fft import fftn, fftshift, ifftn, ifftshift
from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0
# Implementation of FreeU for minsdxl
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).
This version of the method comes from here:
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
"""
x = x_in
B, C, H, W = x.shape
# Non-power of 2 images must be float32
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
x = x.to(dtype=torch.float32)
# FFT
x_freq = fftn(x, dim=(-2, -1))
x_freq = fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W // 2
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = ifftshift(x_freq, dim=(-2, -1))
x_filtered = ifftn(x_freq, dim=(-2, -1)).real
return x_filtered.to(dtype=x_in.dtype)
def apply_freeu(
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs):
"""Applies the FreeU mechanism as introduced in https:
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.
Args:
resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
hidden_states (`torch.Tensor`): Inputs to the underlying block.
res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if resolution_idx == 0:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
if resolution_idx == 1:
num_half_channels = hidden_states.shape[1] // 2
hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])
return hidden_states, res_hidden_states
# Diffusers-style LoRA to keep everything in the min_sdxl.py file
class LoRALinearLayer(nn.Module):
r"""
A linear layer that is used with LoRA.
Parameters:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
rank (`int`, `optional`, defaults to 4):
The rank of the LoRA layer.
network_alpha (`float`, `optional`, defaults to `None`):
The value of the network alpha used for stable learning and preventing underflow. This value has the same
meaning as the `--network_alpha` option in the kohya-ss trainer script. See
https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
device (`torch.device`, `optional`, defaults to `None`):
The device to use for the layer's weights.
dtype (`torch.dtype`, `optional`, defaults to `None`):
The dtype to use for the layer's weights.
"""
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 4,
network_alpha: Optional[float] = None,
device: Optional[Union[torch.device, str]] = None,
dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class LoRACompatibleLinear(nn.Linear):
"""
A Linear layer that can be used with LoRA.
"""
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
super().__init__(*args, **kwargs)
self.lora_layer = lora_layer
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
self.lora_layer = lora_layer
def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
if self.lora_layer is None:
return
dtype, device = self.weight.data.dtype, self.weight.data.device
w_orig = self.weight.data.float()
w_up = self.lora_layer.up.weight.data.float()
w_down = self.lora_layer.down.weight.data.float()
if self.lora_layer.network_alpha is not None:
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
if safe_fusing and torch.isnan(fused_weight).any().item():
raise ValueError(
"This LoRA weight seems to be broken. "
f"Encountered NaN values when trying to fuse LoRA weights for {self}."
"LoRA weights will not be fused."
)
self.weight.data = fused_weight.to(device=device, dtype=dtype)
# we can drop the lora layer now
self.lora_layer = None
# offload the up and down matrices to CPU to not blow the memory
self.w_up = w_up.cpu()
self.w_down = w_down.cpu()
self._lora_scale = lora_scale
def _unfuse_lora(self):
if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
return
fused_weight = self.weight.data
dtype, device = fused_weight.dtype, fused_weight.device
w_up = self.w_up.to(device=device).float()
w_down = self.w_down.to(device).float()
unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
self.w_up = None
self.w_down = None
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
if self.lora_layer is None:
out = super().forward(hidden_states)
return out
else:
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
return out
class Timesteps(nn.Module):
def __init__(self, num_channels: int = 320):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(
half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_features, out_features):
super(TimestepEmbedding, self).__init__()
self.linear_1 = nn.Linear(in_features, out_features, bias=True)
self.act = nn.SiLU()
self.linear_2 = nn.Linear(out_features, out_features, bias=True)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class ResnetBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, conv_shortcut=True):
super(ResnetBlock2D, self).__init__()
self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.time_emb_proj = nn.Linear(1280, out_channels, bias=True)
self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True)
self.dropout = nn.Dropout(p=0.0, inplace=False)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.nonlinearity = nn.SiLU()
self.conv_shortcut = None
if conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1
)
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, None, None]
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
return output_tensor
class Attention(nn.Module):
def __init__(
self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True
):
super(Attention, self).__init__()
if num_heads is None:
self.head_dim = 64
self.num_heads = inner_dim // self.head_dim
else:
self.num_heads = num_heads
self.head_dim = inner_dim // num_heads
self.scale = self.head_dim**-0.5
if cross_attention_dim is None:
cross_attention_dim = inner_dim
self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False)
self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList(
[LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)]
)
self.scale_qk = scale_qk
if processor is None:
processor = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
)
self.set_processor(processor)
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
r"""
The forward method of the `Attention` class.
Args:
hidden_states (`torch.Tensor`):
The hidden states of the query.
encoder_hidden_states (`torch.Tensor`, *optional*):
The hidden states of the encoder.
attention_mask (`torch.Tensor`, *optional*):
The attention mask to use. If `None`, no mask is applied.
**cross_attention_kwargs:
Additional keyword arguments to pass along to the cross attention.
Returns:
`torch.Tensor`: The output of the attention layer.
"""
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
if len(unused_kwargs) > 0:
print(
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
)
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
def orig_forward(self, hidden_states, encoder_hidden_states=None):
q = self.to_q(hidden_states)
k = (
self.to_k(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_k(hidden_states)
)
v = (
self.to_v(encoder_hidden_states)
if encoder_hidden_states is not None
else self.to_v(hidden_states)
)
b, t, c = q.size()
q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2)
# scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
# attn_weights = torch.softmax(scores, dim=-1)
# attn_output = torch.matmul(attn_weights, v)
attn_output = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale,
)
attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)
for layer in self.to_out:
attn_output = layer(attn_output)
return attn_output
def set_processor(self, processor) -> None:
r"""
Set the attention processor to use.
Args:
processor (`AttnProcessor`):
The attention processor to use.
"""
# if current processor is in `self._modules` and if passed `processor` is not, we need to
# pop `processor` from `self._modules`
if (
hasattr(self, "processor")
and isinstance(self.processor, torch.nn.Module)
and not isinstance(processor, torch.nn.Module)
):
print(f"You are removing possibly trained weights of {self.processor} with {processor}")
self._modules.pop("processor")
self.processor = processor
def get_processor(self, return_deprecated_lora: bool = False):
r"""
Get the attention processor in use.
Args:
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
Set to `True` to return the deprecated LoRA attention processor.
Returns:
"AttentionProcessor": The attention processor in use.
"""
if not return_deprecated_lora:
return self.processor
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
# serialization format for LoRA Attention Processors. It should be deleted once the integration
# with PEFT is completed.
is_lora_activated = {
name: module.lora_layer is not None
for name, module in self.named_modules()
if hasattr(module, "lora_layer")
}
# 1. if no layer has a LoRA activated we can return the processor as usual
if not any(is_lora_activated.values()):
return self.processor
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
is_lora_activated.pop("add_k_proj", None)
is_lora_activated.pop("add_v_proj", None)
# 2. else it is not possible that only some layers have LoRA activated
if not all(is_lora_activated.values()):
raise ValueError(
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
)
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
non_lora_processor_cls_name = self.processor.__class__.__name__
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
hidden_size = self.inner_dim
# now create a LoRA attention processor from the LoRA layers
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
kwargs = {
"cross_attention_dim": self.cross_attention_dim,
"rank": self.to_q.lora_layer.rank,
"network_alpha": self.to_q.lora_layer.network_alpha,
"q_rank": self.to_q.lora_layer.rank,
"q_hidden_size": self.to_q.lora_layer.out_features,
"k_rank": self.to_k.lora_layer.rank,
"k_hidden_size": self.to_k.lora_layer.out_features,
"v_rank": self.to_v.lora_layer.rank,
"v_hidden_size": self.to_v.lora_layer.out_features,
"out_rank": self.to_out[0].lora_layer.rank,
"out_hidden_size": self.to_out[0].lora_layer.out_features,
}
if hasattr(self.processor, "attention_op"):
kwargs["attention_op"] = self.processor.attention_op
lora_processor = lora_processor_cls(hidden_size, **kwargs)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
lora_processor = lora_processor_cls(
hidden_size,
cross_attention_dim=self.add_k_proj.weight.shape[0],
rank=self.to_q.lora_layer.rank,
network_alpha=self.to_q.lora_layer.network_alpha,
)
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
# only save if used
if self.add_k_proj.lora_layer is not None:
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
else:
lora_processor.add_k_proj_lora = None
lora_processor.add_v_proj_lora = None
else:
raise ValueError(f"{lora_processor_cls} does not exist.")
return lora_processor
class GEGLU(nn.Module):
def __init__(self, in_features, out_features):
super(GEGLU, self).__init__()
self.proj = nn.Linear(in_features, out_features * 2, bias=True)
def forward(self, x):
x_proj = self.proj(x)
x1, x2 = x_proj.chunk(2, dim=-1)
return x1 * torch.nn.functional.gelu(x2)
class FeedForward(nn.Module):
def __init__(self, in_features, out_features):
super(FeedForward, self).__init__()
self.net = nn.ModuleList(
[
GEGLU(in_features, out_features * 4),
nn.Dropout(p=0.0, inplace=False),
nn.Linear(out_features * 4, out_features, bias=True),
]
)
def forward(self, x):
for layer in self.net:
x = layer(x)
return x
class BasicTransformerBlock(nn.Module):
def __init__(self, hidden_size):
super(BasicTransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn1 = Attention(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.attn2 = Attention(hidden_size, 2048)
self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
self.ff = FeedForward(hidden_size, hidden_size)
def forward(self, x, encoder_hidden_states=None):
residual = x
x = self.norm1(x)
x = self.attn1(x)
x = x + residual
residual = x
x = self.norm2(x)
if encoder_hidden_states is not None:
x = self.attn2(x, encoder_hidden_states)
else:
x = self.attn2(x)
x = x + residual
residual = x
x = self.norm3(x)
x = self.ff(x)
x = x + residual
return x
class Transformer2DModel(nn.Module):
def __init__(self, in_channels, out_channels, n_layers):
super(Transformer2DModel, self).__init__()
self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True)
self.proj_in = nn.Linear(in_channels, out_channels, bias=True)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(out_channels) for _ in range(n_layers)]
)
self.proj_out = nn.Linear(out_channels, out_channels, bias=True)
def forward(self, hidden_states, encoder_hidden_states=None):
batch, _, height, width = hidden_states.shape
res = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states)
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
return hidden_states + res
class Downsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Downsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=2, padding=1
)
def forward(self, x):
return self.conv(x)
class Upsample2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample2D, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
return self.conv(x)
class DownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels):
super(DownBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels, conv_shortcut=False),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])
def forward(self, hidden_states, temb):
output_states = []
for module in self.resnets:
hidden_states = module(hidden_states, temb)
output_states.append(hidden_states)
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnDownBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True):
super(CrossAttnDownBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_channels, out_channels),
ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
]
)
self.downsamplers = None
if has_downsamplers:
self.downsamplers = nn.ModuleList(
[Downsample2D(out_channels, out_channels)]
)
def forward(self, hidden_states, temb, encoder_hidden_states):
output_states = []
for resnet, attn in zip(self.resnets, self.attentions):
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
output_states.append(hidden_states)
if self.downsamplers is not None:
hidden_states = self.downsamplers[0](hidden_states)
output_states.append(hidden_states)
return hidden_states, output_states
class CrossAttnUpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel, n_layers):
super(CrossAttnUpBlock2D, self).__init__()
self.attentions = nn.ModuleList(
[
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
Transformer2DModel(out_channels, out_channels, n_layers),
]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(prev_output_channel + out_channels, out_channels),
ResnetBlock2D(2 * out_channels, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])
def forward(
self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states
):
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class UpBlock2D(nn.Module):
def __init__(self, in_channels, out_channels, prev_output_channel):
super(UpBlock2D, self).__init__()
self.resnets = nn.ModuleList(
[
ResnetBlock2D(out_channels + prev_output_channel, out_channels),
ResnetBlock2D(out_channels * 2, out_channels),
ResnetBlock2D(out_channels + in_channels, out_channels),
]
)
def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
and getattr(self, "resolution_idx", None)
)
for resnet in self.resnets:
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNetMidBlock2DCrossAttn(nn.Module):
def __init__(self, in_features):
super(UNetMidBlock2DCrossAttn, self).__init__()
self.attentions = nn.ModuleList(
[Transformer2DModel(in_features, in_features, n_layers=10)]
)
self.resnets = nn.ModuleList(
[
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
ResnetBlock2D(in_features, in_features, conv_shortcut=False),
]
)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
hidden_states = self.resnets[0](hidden_states, temb)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
)
hidden_states = resnet(hidden_states, temb)
return hidden_states
class UNet2DConditionModel(nn.Module):
def __init__(self):
super(UNet2DConditionModel, self).__init__()
# This is needed to imitate huggingface config behavior
# has nothing to do with the model itself
# remove this if you don't use diffuser's pipeline
self.config = namedtuple(
"config", "in_channels addition_time_embed_dim sample_size"
)
self.config.in_channels = 4
self.config.addition_time_embed_dim = 256
self.config.sample_size = 128
self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1)
self.time_proj = Timesteps()
self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280)
self.add_time_proj = Timesteps(256)
self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280)
self.down_blocks = nn.ModuleList(
[
DownBlock2D(in_channels=320, out_channels=320),
CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2),
CrossAttnDownBlock2D(
in_channels=640,
out_channels=1280,
n_layers=10,
has_downsamplers=False,
),
]
)
self.up_blocks = nn.ModuleList(
[
CrossAttnUpBlock2D(
in_channels=640,
out_channels=1280,
prev_output_channel=1280,
n_layers=10,
),
CrossAttnUpBlock2D(
in_channels=320,
out_channels=640,
prev_output_channel=1280,
n_layers=2,
),
UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640),
]
)
self.mid_block = UNetMidBlock2DCrossAttn(1280)
self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1)
def forward(
self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs
):
# Implement the forward pass through the model
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps).to(dtype=sample.dtype)
emb = self.time_embedding(t_emb)
text_embeds = added_cond_kwargs.get("text_embeds")
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
emb = emb + aug_emb
sample = self.conv_in(sample)
# 3. down
s0 = sample
sample, [s1, s2, s3] = self.down_blocks[0](
sample,
temb=emb,
)
sample, [s4, s5, s6] = self.down_blocks[1](
sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
sample, [s7, s8] = self.down_blocks[2](
sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
# 4. mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states
)
# 5. up
sample = self.up_blocks[0](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s6, s7, s8],
encoder_hidden_states=encoder_hidden_states,
)
sample = self.up_blocks[1](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s3, s4, s5],
encoder_hidden_states=encoder_hidden_states,
)
sample = self.up_blocks[2](
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=[s0, s1, s2],
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return [sample] |