Spaces:
Running
Running
File size: 13,749 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import argparse
import numpy as np
import torch
from PIL import Image
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from diffusers import DDPMScheduler
from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline
def name_unet_submodules(unet):
def recursive_find_module(name, module, end=False):
if end:
for sub_name, sub_module in module.named_children():
sub_module.full_name = f"{name}.{sub_name}"
return
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return
elif "resnets" in name: return
for sub_name, sub_module in module.named_children():
end = True if sub_name == "transformer_blocks" else False
recursive_find_module(f"{name}.{sub_name}", sub_module, end)
for name, module in unet.named_children():
recursive_find_module(name, module)
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
# ratio = min_side / min(h, w)
# w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def tensor_to_pil(images):
"""
Convert image tensor or a batch of image tensors to PIL image(s).
"""
images = images.clamp(0, 1)
images_np = images.detach().cpu().numpy()
if images_np.ndim == 4:
images_np = np.transpose(images_np, (0, 2, 3, 1))
elif images_np.ndim == 3:
images_np = np.transpose(images_np, (1, 2, 0))
images_np = images_np[None, ...]
images_np = (images_np * 255).round().astype("uint8")
if images_np.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np]
else:
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np]
return pil_images
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def main(args, device):
# Load pretrained models.
pipe = InstantIRPipeline.from_pretrained(
args.sdxl_path,
torch_dtype=torch.float16,
)
# Image prompt projector.
print("Loading LQ-Adapter...")
load_adapter_to_pipe(
pipe,
args.adapter_model_path if args.adapter_model_path is not None else os.path.join(args.instantir_path, 'adapter.pt'),
args.vision_encoder_path,
use_clip_encoder=args.use_clip_encoder,
)
# Prepare previewer
previewer_lora_path = args.previewer_lora_path if args.previewer_lora_path is not None else args.instantir_path
if previewer_lora_path is not None:
lora_alpha = pipe.prepare_previewers(previewer_lora_path)
print(f"use lora alpha {lora_alpha}")
pipe.to(device=device, dtype=torch.float16)
pipe.scheduler = DDPMScheduler.from_pretrained(args.sdxl_path, subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# Load weights.
print("Loading checkpoint...")
pretrained_state_dict = torch.load(os.path.join(args.instantir_path, "aggregator.pt"), map_location="cpu")
pipe.aggregator.load_state_dict(pretrained_state_dict)
pipe.aggregator.to(device, dtype=torch.float16)
#################### Restoration ####################
post_fix = f"_{args.post_fix}" if args.post_fix else ""
os.makedirs(f"{args.out_path}/{post_fix}", exist_ok=True)
processed_imgs = os.listdir(os.path.join(args.out_path, post_fix))
lq_files = []
lq_batch = []
if os.path.isfile(args.test_path):
all_inputs = [args.test_path.split("/")[-1]]
else:
all_inputs = os.listdir(args.test_path)
all_inputs.sort()
for file in all_inputs:
if file in processed_imgs:
print(f"Skip {file}")
continue
lq_batch.append(f"{file}")
if len(lq_batch) == args.batch_size:
lq_files.append(lq_batch)
lq_batch = []
if len(lq_batch) > 0:
lq_files.append(lq_batch)
for lq_batch in lq_files:
generator = torch.Generator(device=device).manual_seed(args.seed)
pil_lqs = [Image.open(os.path.join(args.test_path, file)) for file in lq_batch]
if args.width is None or args.height is None:
lq = [resize_img(pil_lq.convert("RGB"), size=None) for pil_lq in pil_lqs]
else:
lq = [resize_img(pil_lq.convert("RGB"), size=(args.width, args.height)) for pil_lq in pil_lqs]
timesteps = None
if args.denoising_start < 1000:
timesteps = [
i * (args.denoising_start//args.num_inference_steps) + pipe.scheduler.config.steps_offset for i in range(0, args.num_inference_steps)
]
timesteps = timesteps[::-1]
pipe.scheduler.set_timesteps(args.num_inference_steps, device)
timesteps = pipe.scheduler.timesteps
if args.prompt is None or len(args.prompt) == 0:
prompt = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
ultra HD, extreme meticulous detailing, skin pore detailing, \
hyper sharpness, perfect without deformations, \
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "
else:
prompt = args.prompt
if not isinstance(prompt, list):
prompt = [prompt]
prompt = prompt*len(lq)
if args.neg_prompt is None or len(args.neg_prompt) == 0:
neg_prompt = "blurry, out of focus, unclear, depth of field, over-smooth, \
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
watermark, signature, jpeg artifacts, deformed, lowres"
else:
neg_prompt = args.neg_prompt
if not isinstance(neg_prompt, list):
neg_prompt = [neg_prompt]
neg_prompt = neg_prompt*len(lq)
image = pipe(
prompt=prompt,
image=lq,
num_inference_steps=args.num_inference_steps,
generator=generator,
timesteps=timesteps,
negative_prompt=neg_prompt,
guidance_scale=args.cfg,
previewer_scheduler=lcm_scheduler,
preview_start=args.preview_start,
control_guidance_end=args.creative_start,
).images
if args.save_preview_row:
for i, lcm_image in enumerate(image[1]):
lcm_image.save(f"./lcm/{i}.png")
for i, rec_image in enumerate(image):
rec_image.save(f"{args.out_path}/{post_fix}/{lq_batch[i]}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="InstantIR pipeline")
parser.add_argument(
"--sdxl_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--previewer_lora_path",
type=str,
default=None,
help="Path to LCM lora or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--instantir_path",
type=str,
default=None,
required=True,
help="Path to pretrained instantir model.",
)
parser.add_argument(
"--vision_encoder_path",
type=str,
default='/share/huangrenyuan/model_zoo/vis_backbone/dinov2_large',
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--adapter_model_path",
type=str,
default=None,
help="Path to IP-Adapter models or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--adapter_tokens",
type=int,
default=64,
help="Number of tokens to use in IP-adapter cross attention mechanism.",
)
parser.add_argument(
"--use_clip_encoder",
action="store_true",
help="Whether or not to use DINO as image encoder, else CLIP encoder.",
)
parser.add_argument(
"--denoising_start",
type=int,
default=1000,
help="Diffusion start timestep."
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=30,
help="Diffusion steps."
)
parser.add_argument(
"--creative_start",
type=float,
default=1.0,
help="Proportion of timesteps for creative restoration. 1.0 means no creative restoration while 0.0 means completely free rendering."
)
parser.add_argument(
"--preview_start",
type=float,
default=0.0,
help="Proportion of timesteps to stop previewing at the begining to enhance fidelity to input."
)
parser.add_argument(
"--resolution",
type=int,
default=1024,
help="Number of tokens to use in IP-adapter cross attention mechanism.",
)
parser.add_argument(
"--batch_size",
type=int,
default=6,
help="Test batch size."
)
parser.add_argument(
"--width",
type=int,
default=None,
help="Output image width."
)
parser.add_argument(
"--height",
type=int,
default=None,
help="Output image height."
)
parser.add_argument(
"--cfg",
type=float,
default=7.0,
help="Scale of Classifier-Free-Guidance (CFG).",
)
parser.add_argument(
"--post_fix",
type=str,
default=None,
help="Subfolder name for restoration output under the output directory.",
)
parser.add_argument(
"--variant",
type=str,
default='fp16',
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--save_preview_row",
action="store_true",
help="Whether or not to save the intermediate lcm outputs.",
)
parser.add_argument(
"--prompt",
type=str,
default='',
nargs="+",
help=(
"A set of prompts for creative restoration. Provide either a matching number of test images,"
" or a single prompt to be used with all inputs."
),
)
parser.add_argument(
"--neg_prompt",
type=str,
default='',
nargs="+",
help=(
"A set of negative prompts for creative restoration. Provide either a matching number of test images,"
" or a single negative prompt to be used with all inputs."
),
)
parser.add_argument(
"--test_path",
type=str,
default=None,
required=True,
help="Test directory.",
)
parser.add_argument(
"--out_path",
type=str,
default="./output",
help="Output directory.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
args = parser.parse_args()
args.height = args.height or args.width
args.width = args.width or args.height
if args.height is not None and (args.width % 64 != 0 or args.height % 64 != 0):
raise ValueError("Image resolution must be divisible by 64.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main(args, device) |