Spaces:
Running
Running
File size: 11,001 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import torch
from typing import List
from collections import namedtuple, OrderedDict
def is_torch2_available():
return hasattr(torch.nn.functional, "scaled_dot_product_attention")
if is_torch2_available():
from .attention_processor import (
AttnProcessor2_0 as AttnProcessor,
)
from .attention_processor import (
CNAttnProcessor2_0 as CNAttnProcessor,
)
from .attention_processor import (
IPAttnProcessor2_0 as IPAttnProcessor,
)
from .attention_processor import (
TA_IPAttnProcessor2_0 as TA_IPAttnProcessor,
)
else:
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MLPProjModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
torch.nn.GELU(),
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
torch.nn.LayerNorm(cross_attention_dim)
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class MultiIPAdapterImageProjection(torch.nn.Module):
def __init__(self, IPAdapterImageProjectionLayers):
super().__init__()
self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers)
def forward(self, image_embeds: List[torch.FloatTensor]):
projected_image_embeds = []
# currently, we accept `image_embeds` as
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
if not isinstance(image_embeds, list):
image_embeds = [image_embeds.unsqueeze(1)]
if len(image_embeds) != len(self.image_projection_layers):
raise ValueError(
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
)
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
image_embed = image_projection_layer(image_embed)
# image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
projected_image_embeds.append(image_embed)
return projected_image_embeds
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj = image_proj_model
self.ip_adapter = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
ip_tokens = self.image_proj(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
state_dict = torch.load(ckpt_path, map_location="cpu")
keys = list(state_dict.keys())
if keys != ["image_proj", "ip_adapter"]:
state_dict = revise_state_dict(state_dict)
# Load state dict for image_proj_model and adapter_modules
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True)
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
class IPAdapterPlus(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj = image_proj_model
self.ip_adapter = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
ip_tokens = self.image_proj(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
org_unet_sum = []
for attn_name, attn_proc in self.unet.attn_processors.items():
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
org_unet_sum = torch.sum(torch.stack(org_unet_sum))
state_dict = torch.load(ckpt_path, map_location="cpu")
keys = list(state_dict.keys())
if keys != ["image_proj", "ip_adapter"]:
state_dict = revise_state_dict(state_dict)
# Check if 'latents' exists in both the saved state_dict and the current model's state_dict
strict_load_image_proj_model = True
if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict():
# Check if the shapes are mismatched
if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape:
print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.")
print("Removing 'latents' from checkpoint and loading the rest of the weights.")
del state_dict["image_proj"]["latents"]
strict_load_image_proj_model = False
# Load state dict for image_proj_model and adapter_modules
self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model)
missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False)
if len(missing_key) > 0:
for ms in missing_key:
if "ln" not in ms:
raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}")
if len(unexpected_key) > 0:
raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}")
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
# Verify if the weights loaded to unet
unet_sum = []
for attn_name, attn_proc in self.unet.attn_processors.items():
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
unet_sum = torch.sum(torch.stack(unet_sum))
assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!"
assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!"
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!"
class IPAdapterXL(IPAdapter):
"""SDXL"""
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
ip_tokens = self.image_proj(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
return noise_pred
class IPAdapterPlusXL(IPAdapterPlus):
"""IP-Adapter with fine-grained features"""
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
ip_tokens = self.image_proj(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
return noise_pred
class IPAdapterFull(IPAdapterPlus):
"""IP-Adapter with full features"""
def init_proj(self):
image_proj_model = MLPProjModel(
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
clip_embeddings_dim=self.image_encoder.config.hidden_size,
).to(self.device, dtype=torch.float16)
return image_proj_model
|