File size: 15,169 Bytes
5bf7c30
 
 
884584a
c721d8e
 
 
 
884584a
81bbc60
 
 
 
5bf7c30
 
 
 
 
 
 
cd256bf
c721d8e
 
 
 
 
 
 
5bf7c30
 
 
 
 
 
 
f79954b
 
704eb5b
 
 
5bf7c30
 
 
 
 
 
 
 
 
 
76e1dc2
5bf7c30
76e1dc2
5bf7c30
 
 
 
 
 
 
76e1dc2
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
81bbc60
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
1b6dbf0
 
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c721d8e
5bf7c30
 
1b6dbf0
5bf7c30
 
 
 
 
 
1b6dbf0
5bf7c30
 
 
 
 
 
 
401ed77
 
 
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6dbf0
 
 
 
 
 
 
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cc262c
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
f79954b
 
5bf7c30
 
 
f79954b
5bf7c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6dbf0
5bf7c30
 
 
c721d8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
##!/usr/bin/python3
# -*- coding: utf-8 -*-
import os

#print("Installing correct gradio version...")
#os.system("pip uninstall -y gradio")
#os.system("pip install gradio==3.50.0")
#print("Installing Finished!")

##!/usr/bin/python3
# -*- coding: utf-8 -*-
import gradio as gr
import os
import cv2
from PIL import Image
import numpy as np
from segment_anything import SamPredictor, sam_model_registry
import torch
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
import random

if torch.backends.mps.is_available():
  DEVICE = "mps"
elif torch.cuda.is_available():
  DEVICE = "cuda"
else:
  DEVICE = "cpu"
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to(DEVICE)
mobile_sam.eval()
mobile_predictor = SamPredictor(mobile_sam)
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]

# - - - - - examples  - - - - -  #
image_examples = [
    ["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, [], [Image.open("examples/brushnet/src/test_result.png")]],
    ["examples/brushnet/src/example_1.jpg", "A man in Chinese traditional clothes", "examples/brushnet/src/example_1_mask.jpg", 1, [], [Image.open("examples/brushnet/src/example_1_result.png")]],
    ["examples/brushnet/src/example_3.jpg", "a cut toy on the table", "examples/brushnet/src/example_3_mask.jpg", 2, [], [Image.open("examples/brushnet/src/example_3_result.png")]],
    ["examples/brushnet/src/example_4.jpeg", "a car driving in the wild", "examples/brushnet/src/example_4_mask.jpg", 3, [], [Image.open("examples/brushnet/src/example_4_result.png")]],
    ["examples/brushnet/src/example_5.jpg", "a charming woman wearing dress standing in the dark forest", "examples/brushnet/src/example_5_mask.jpg", 4, [], [Image.open("examples/brushnet/src/example_5_result.png")]],
]


# choose the base model here
base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE"
# base_model_path = "runwayml/stable-diffusion-v1-5"

# input brushnet ckpt path
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt"

brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16, device=DEVICE)
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
    base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False, device=DEVICE
)

# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed or when using Torch 2.0.
# pipe.enable_xformers_memory_efficient_attention()
# memory optimization.
pipe.enable_model_cpu_offload(device=DEVICE)

def resize_image(input_image, resolution):
    H, W, C = input_image.shape
    H = float(H)
    W = float(W)
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
    return img


def process(input_image, 
    original_image, 
    original_mask, 
    input_mask, 
    selected_points, 
    prompt, 
    negative_prompt, 
    blended, 
    invert_mask, 
    control_strength, 
    seed, 
    randomize_seed, 
    guidance_scale, 
    num_inference_steps,
    count):
    if original_image is None:
        raise gr.Error('Please upload the input image')
    if (original_mask is None or len(selected_points)==0) and input_mask is None:
        raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image")
    
    # load example image
    if isinstance(original_image, int):
        image_name = image_examples[original_image][0]
        original_image = cv2.imread(image_name)
        original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)

    if input_mask is not None:
        H,W=original_image.shape[:2]
        original_mask = cv2.resize(input_mask, (W, H))
    else:
        original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)

    if invert_mask:
        original_mask=255-original_mask

    mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis]
    masked_image = original_image * (1-mask)

    init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
    mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")

    generator = torch.Generator(DEVICE).manual_seed(random.randint(0,2147483647) if randomize_seed else seed)

    image = pipe(
        [prompt]*count, 
        init_image, 
        mask_image, 
        num_inference_steps=num_inference_steps, 
        guidance_scale=guidance_scale,
        generator=generator,
        brushnet_conditioning_scale=float(control_strength),
        negative_prompt=[negative_prompt]*count,
    ).images

    if blended:
        if control_strength<1.0:
            raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
        blended_image=[]
        # blur, you can adjust the parameters for better performance
        mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
        mask_blurred = mask_blurred[:,:,np.newaxis]
        mask = 1-(1-mask) * (1-mask_blurred)
        for image_i in image:
            image_np=np.array(image_i)
            image_pasted=original_image * (1-mask) + image_np*mask

            image_pasted=image_pasted.astype(image_np.dtype)
            blended_image.append(Image.fromarray(image_pasted))
        
        image=blended_image

    return image

block = gr.Blocks(
        theme=gr.themes.Soft(
             radius_size=gr.themes.sizes.radius_none,
             text_size=gr.themes.sizes.text_md
         )
        ).queue()
with block:
    with gr.Row():
        with gr.Column():
            
            gr.HTML(f"""
                    <div style="text-align: center;">
                        <h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1>
                        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                            <a href=""></a>
                            <a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a>
                            <a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
                        </div>
                        </br>
                    </div>
            """)


    with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
        with gr.Row(equal_height=True):
            gr.Markdown("""
            - ⭐️ <b>step1: </b>Upload or select one image from Example
            - ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change.
            - ⭐️ <b>step3: </b>Input prompt for generating new contents
            - ⭐️ <b>step4: </b>Click Run button
            """)                          
    with gr.Row():
        with gr.Column():
            with gr.Column(elem_id="Input"):
                with gr.Row():
                    with gr.Tabs(elem_classes=["feedback"]):
                        with gr.TabItem("Input Image"):
                            input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
                original_image = gr.State(value=None,label="index")
                original_mask = gr.State(value=None)
                selected_points = gr.State([],label="select points")
                with gr.Row(elem_id="Seg"):
                    radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
                    undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
            prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
            negative_prompt = gr.Text(
                        label="Negative Prompt",
                        max_lines=5,
                        placeholder="Please input your negative prompt",
                        value='ugly, low quality',lines=1
                    )
            count = gr.Number(
                        label="Number of Images",
                        minimun=1,
                        value=2,
                        precision=0,
                        step=1
            )
            with gr.Group():
                with gr.Row():
                    blending = gr.Checkbox(label="Blurred Blending", value=False)
                    invert_mask = gr.Checkbox(label="Invert Mask", value=True)
            run_button = gr.Button("Run",elem_id="btn")
            
            with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
                control_strength = gr.Slider(
                    label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
                    )
                with gr.Group():
                    seed = gr.Slider(
                        label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
                
                with gr.Group():
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=1,
                            maximum=12,
                            step=0.1,
                            value=12,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=50,
                        )
                with gr.Row(elem_id="Image"):
                    with gr.Tabs(elem_classes=["feedback1"]):
                        with gr.TabItem("User-specified Mask Image (Optional)"):
                            input_mask = gr.Image(type="numpy", label="Mask Image", height=640)
            
        with gr.Column():
            with gr.Tabs(elem_classes=["feedback"]):
                with gr.TabItem("Outputs"):
                    result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
    with gr.Row():
        def process_example(input_image, prompt, input_mask, original_image, selected_points,result_gallery): #
            return input_image, prompt, input_mask, original_image, [], result_gallery
        example = gr.Examples(
            label="Input Example",
            examples=image_examples,
            inputs=[input_image, prompt, input_mask, original_image, selected_points,result_gallery],
            outputs=[input_image, prompt, input_mask, original_image, selected_points],
            fn=process_example,
            run_on_click=True,
            examples_per_page=10
        )

    # once user upload an image, the original image is stored in `original_image`
    def store_img(img):
        # image upload is too slow
        if min(img.shape[0], img.shape[1]) > 512:
            img = resize_image(img, 512)
        if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
            raise gr.Error('image aspect ratio cannot be larger than 2.0')
        return img, img, [], None  # when new image is uploaded, `selected_points` should be empty

    input_image.upload(
        store_img,
        [input_image],
        [input_image, original_image, selected_points]
    )

    # user click the image to get points, and show the points on the image
    def segmentation(img, sel_pix):
        # online show seg mask
        points = []
        labels = []
        for p, l in sel_pix:
            points.append(p)
            labels.append(l)
        mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
        with torch.no_grad():
            masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)

        output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
        for i in range(3):
                output_mask[masks[0] == True, i] = 0.0

        mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
        color_mask = np.random.random((1, 3)).tolist()[0]
        for i in range(3):
            mask_all[masks[0] == True, i] = color_mask[i]
        masked_img = img / 255 * 0.3 + mask_all * 0.7
        masked_img = masked_img*255
        ## draw points
        for point, label in sel_pix:
            cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
        return masked_img, output_mask
    
    def get_point(img, sel_pix, point_type, evt: gr.SelectData):
        if point_type == 'foreground':
            sel_pix.append((evt.index, 1))   # append the foreground_point
        elif point_type == 'background':
            sel_pix.append((evt.index, 0))    # append the background_point
        else:
            sel_pix.append((evt.index, 1))    # default foreground_point

        if isinstance(img, int):
            image_name = image_examples[img][0]
            img = cv2.imread(image_name)
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # online show seg mask
        masked_img, output_mask = segmentation(img, sel_pix)
        return masked_img.astype(np.uint8), output_mask
    
    input_image.select(
        get_point,
        [original_image, selected_points, radio],
        [input_image, original_mask],
    )

    # undo the selected point
    def undo_points(orig_img, sel_pix):
        # draw points
        output_mask = None
        if len(sel_pix) != 0:
            if isinstance(orig_img, int):   # if orig_img is int, the image if select from examples
                temp = cv2.imread(image_examples[orig_img][0])
                temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
            else:
                temp = orig_img.copy()
            sel_pix.pop()
            # online show seg mask
            if len(sel_pix) !=0:
                temp, output_mask = segmentation(temp, sel_pix)
            return temp.astype(np.uint8), output_mask
        else:
            gr.Error("Nothing to Undo")
    
    undo_button.click(
        undo_points,
        [original_image, selected_points],
        [input_image, original_mask]
    )

    ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps, count]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])


block.launch()