Spaces:
Runtime error
Runtime error
Upload 20 files
Browse files- .gitattributes +6 -0
- LICENSE +21 -0
- LICENSE.md +21 -0
- asset/gradio_example.png +3 -0
- data/example/1.png +3 -0
- data/example/2.png +3 -0
- data/example/3.png +3 -0
- data/example/4.png +3 -0
- data/example/5.png +3 -0
- data/example/annotation.json +27 -0
- data/example/log.csv +0 -0
- environment.yml +17 -0
- example_config.yaml +23 -0
- injection_main.py +739 -0
- lpipsPyTorch/__init__.py +21 -0
- lpipsPyTorch/modules/lpips.py +36 -0
- lpipsPyTorch/modules/networks.py +96 -0
- lpipsPyTorch/modules/utils.py +30 -0
- models/attn_injection.py +509 -0
- requirements.txt +13 -0
- utils/exp_utils.py +93 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
asset/gradio_example.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/example/1.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/example/2.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
data/example/3.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/example/4.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
data/example/5.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Ruixiang JIANG
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
LICENSE.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Ruixiang JIANG
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
asset/gradio_example.png
ADDED
Git LFS Details
|
data/example/1.png
ADDED
Git LFS Details
|
data/example/2.png
ADDED
Git LFS Details
|
data/example/3.png
ADDED
Git LFS Details
|
data/example/4.png
ADDED
Git LFS Details
|
data/example/5.png
ADDED
Git LFS Details
|
data/example/annotation.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"image_path": "data/example/1.png",
|
4 |
+
"source_prompt": "",
|
5 |
+
"target_prompt": "A B&W pencil sketch, detailed cross-hatching"
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"image_path": "data/example/2.png",
|
9 |
+
"source_prompt": "",
|
10 |
+
"target_prompt": "American comic, western style"
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"image_path": "data/example/3.png",
|
14 |
+
"source_prompt": "",
|
15 |
+
"target_prompt": "Starry Night style painting by Van Gogh"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"image_path": "data/example/4.png",
|
19 |
+
"source_prompt": "",
|
20 |
+
"target_prompt": "Cubism painting, detailed."
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"image_path": "data/example/5.png",
|
24 |
+
"source_prompt": "",
|
25 |
+
"target_prompt": "painting by Edvard Munch, The Scream"
|
26 |
+
}
|
27 |
+
]
|
data/example/log.csv
ADDED
File without changes
|
environment.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: gaussian_splatting
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- conda-forge
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- cudatoolkit=11.6
|
8 |
+
- plyfile=0.8.1
|
9 |
+
- python=3.7.13
|
10 |
+
- pip=22.3.1
|
11 |
+
- pytorch=1.12.1
|
12 |
+
- torchaudio=0.12.1
|
13 |
+
- torchvision=0.13.1
|
14 |
+
- tqdm
|
15 |
+
- pip:
|
16 |
+
- submodules/diff-gaussian-rasterization
|
17 |
+
- submodules/simple-knn
|
example_config.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exp_name: example
|
2 |
+
batch_size: 1
|
3 |
+
num_steps: 50
|
4 |
+
start_step: 0
|
5 |
+
out_path: out/
|
6 |
+
seed: 10
|
7 |
+
share_attn_layers: [0, 1, 2, 3, 4, 5, 6, 7, 8]
|
8 |
+
share_resnet_layers: [0,1,2,3]
|
9 |
+
|
10 |
+
share_attn: true
|
11 |
+
share_cross_attn: true
|
12 |
+
share_query: true
|
13 |
+
share_key: true
|
14 |
+
share_value: false
|
15 |
+
use_adain: true
|
16 |
+
use_content_anchor: true
|
17 |
+
disentangle: true
|
18 |
+
resnet_mode: hidden
|
19 |
+
|
20 |
+
annotation: /data/example/annotation.json
|
21 |
+
style_cfg_scale: 7.5
|
22 |
+
tau_attn: 1
|
23 |
+
tau_feat: 1
|
injection_main.py
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import argparse, os
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from PIL import Image
|
10 |
+
from io import BytesIO
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
from matplotlib import pyplot as plt
|
13 |
+
from torchvision import transforms as tfms
|
14 |
+
from diffusers import (
|
15 |
+
StableDiffusionPipeline,
|
16 |
+
DDIMScheduler,
|
17 |
+
DiffusionPipeline,
|
18 |
+
StableDiffusionXLPipeline,
|
19 |
+
)
|
20 |
+
from diffusers.image_processor import VaeImageProcessor
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torchvision
|
24 |
+
import torchvision.transforms as transforms
|
25 |
+
from torchvision.utils import save_image
|
26 |
+
import argparse
|
27 |
+
import PIL.Image as Image
|
28 |
+
from torchvision.utils import make_grid
|
29 |
+
import numpy
|
30 |
+
from diffusers.schedulers import DDIMScheduler
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from models import attn_injection
|
33 |
+
from omegaconf import OmegaConf
|
34 |
+
from typing import List, Tuple
|
35 |
+
|
36 |
+
import omegaconf
|
37 |
+
import utils.exp_utils
|
38 |
+
import json
|
39 |
+
|
40 |
+
device = torch.device("cuda")
|
41 |
+
|
42 |
+
|
43 |
+
def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device):
|
44 |
+
# Tokenize text and get embeddings
|
45 |
+
text_inputs = tokenizer(
|
46 |
+
prompt,
|
47 |
+
padding="max_length",
|
48 |
+
max_length=tokenizer.model_max_length,
|
49 |
+
truncation=True,
|
50 |
+
return_tensors="pt",
|
51 |
+
)
|
52 |
+
text_input_ids = text_inputs.input_ids
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
prompt_embeds = text_encoder(
|
56 |
+
text_input_ids.to(device),
|
57 |
+
output_hidden_states=True,
|
58 |
+
)
|
59 |
+
|
60 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
61 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
62 |
+
if prompt == "":
|
63 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
64 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
65 |
+
return negative_prompt_embeds, negative_pooled_prompt_embeds
|
66 |
+
return prompt_embeds, pooled_prompt_embeds
|
67 |
+
|
68 |
+
|
69 |
+
def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str):
|
70 |
+
device = model._execution_device
|
71 |
+
(
|
72 |
+
prompt_embeds,
|
73 |
+
pooled_prompt_embeds,
|
74 |
+
) = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device)
|
75 |
+
(
|
76 |
+
prompt_embeds_2,
|
77 |
+
pooled_prompt_embeds_2,
|
78 |
+
) = _get_text_embeddings(prompt, model.tokenizer_2, model.text_encoder_2, device)
|
79 |
+
prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1)
|
80 |
+
text_encoder_projection_dim = model.text_encoder_2.config.projection_dim
|
81 |
+
add_time_ids = model._get_add_time_ids(
|
82 |
+
(1024, 1024), (0, 0), (1024, 1024), torch.float16, text_encoder_projection_dim
|
83 |
+
).to(device)
|
84 |
+
# repeat the time ids for each prompt
|
85 |
+
add_time_ids = add_time_ids.repeat(len(prompt), 1)
|
86 |
+
added_cond_kwargs = {
|
87 |
+
"text_embeds": pooled_prompt_embeds_2,
|
88 |
+
"time_ids": add_time_ids,
|
89 |
+
}
|
90 |
+
return added_cond_kwargs, prompt_embeds
|
91 |
+
|
92 |
+
|
93 |
+
def _encode_text_sdxl_with_negative(
|
94 |
+
model: StableDiffusionXLPipeline, prompt: List[str]
|
95 |
+
):
|
96 |
+
|
97 |
+
B = len(prompt)
|
98 |
+
added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt)
|
99 |
+
added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl(
|
100 |
+
model, ["" for _ in range(B)]
|
101 |
+
)
|
102 |
+
prompt_embeds = torch.cat(
|
103 |
+
(
|
104 |
+
prompt_embeds_uncond,
|
105 |
+
prompt_embeds,
|
106 |
+
)
|
107 |
+
)
|
108 |
+
added_cond_kwargs = {
|
109 |
+
"text_embeds": torch.cat(
|
110 |
+
(added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"])
|
111 |
+
),
|
112 |
+
"time_ids": torch.cat(
|
113 |
+
(added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"])
|
114 |
+
),
|
115 |
+
}
|
116 |
+
return added_cond_kwargs, prompt_embeds
|
117 |
+
|
118 |
+
|
119 |
+
# Sample function (regular DDIM)
|
120 |
+
@torch.no_grad()
|
121 |
+
def sample(
|
122 |
+
pipe,
|
123 |
+
prompt,
|
124 |
+
start_step=0,
|
125 |
+
start_latents=None,
|
126 |
+
intermediate_latents=None,
|
127 |
+
guidance_scale=3.5,
|
128 |
+
num_inference_steps=30,
|
129 |
+
num_images_per_prompt=1,
|
130 |
+
do_classifier_free_guidance=True,
|
131 |
+
negative_prompt="",
|
132 |
+
device=device,
|
133 |
+
):
|
134 |
+
negative_prompt = [""] * len(prompt)
|
135 |
+
# Encode prompt
|
136 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
137 |
+
text_embeddings = pipe._encode_prompt(
|
138 |
+
prompt,
|
139 |
+
device,
|
140 |
+
num_images_per_prompt,
|
141 |
+
do_classifier_free_guidance,
|
142 |
+
negative_prompt,
|
143 |
+
)
|
144 |
+
added_cond_kwargs = None
|
145 |
+
elif isinstance(pipe, StableDiffusionXLPipeline):
|
146 |
+
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
|
147 |
+
pipe, prompt
|
148 |
+
)
|
149 |
+
|
150 |
+
# Set num inference steps
|
151 |
+
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
152 |
+
|
153 |
+
# Create a random starting point if we don't have one already
|
154 |
+
if start_latents is None:
|
155 |
+
start_latents = torch.randn(1, 4, 64, 64, device=device)
|
156 |
+
start_latents *= pipe.scheduler.init_noise_sigma
|
157 |
+
|
158 |
+
latents = start_latents.clone()
|
159 |
+
|
160 |
+
latents = latents.repeat(len(prompt), 1, 1, 1)
|
161 |
+
# assume that the first latent is used for reconstruction
|
162 |
+
for i in tqdm(range(start_step, num_inference_steps)):
|
163 |
+
latents[0] = intermediate_latents[(-i + 1)]
|
164 |
+
t = pipe.scheduler.timesteps[i]
|
165 |
+
|
166 |
+
# Expand the latents if we are doing classifier free guidance
|
167 |
+
latent_model_input = (
|
168 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
169 |
+
)
|
170 |
+
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
|
171 |
+
|
172 |
+
# Predict the noise residual
|
173 |
+
noise_pred = pipe.unet(
|
174 |
+
latent_model_input,
|
175 |
+
t,
|
176 |
+
encoder_hidden_states=text_embeddings,
|
177 |
+
added_cond_kwargs=added_cond_kwargs,
|
178 |
+
).sample
|
179 |
+
|
180 |
+
# Perform guidance
|
181 |
+
if do_classifier_free_guidance:
|
182 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
183 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
184 |
+
noise_pred_text - noise_pred_uncond
|
185 |
+
)
|
186 |
+
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
|
187 |
+
|
188 |
+
# Post-processing
|
189 |
+
images = pipe.decode_latents(latents)
|
190 |
+
images = pipe.numpy_to_pil(images)
|
191 |
+
|
192 |
+
return images
|
193 |
+
|
194 |
+
|
195 |
+
# Sample function (regular DDIM), but disentangle the content and style
|
196 |
+
@torch.no_grad()
|
197 |
+
def sample_disentangled(
|
198 |
+
pipe,
|
199 |
+
prompt,
|
200 |
+
start_step=0,
|
201 |
+
start_latents=None,
|
202 |
+
intermediate_latents=None,
|
203 |
+
guidance_scale=3.5,
|
204 |
+
num_inference_steps=30,
|
205 |
+
num_images_per_prompt=1,
|
206 |
+
do_classifier_free_guidance=True,
|
207 |
+
use_content_anchor=True,
|
208 |
+
negative_prompt="",
|
209 |
+
device=device,
|
210 |
+
):
|
211 |
+
negative_prompt = [""] * len(prompt)
|
212 |
+
vae_decoder = VaeImageProcessor(vae_scale_factor=pipe.vae.config.scaling_factor)
|
213 |
+
# Encode prompt
|
214 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
215 |
+
text_embeddings = pipe._encode_prompt(
|
216 |
+
prompt,
|
217 |
+
device,
|
218 |
+
num_images_per_prompt,
|
219 |
+
do_classifier_free_guidance,
|
220 |
+
negative_prompt,
|
221 |
+
)
|
222 |
+
added_cond_kwargs = None
|
223 |
+
elif isinstance(pipe, StableDiffusionXLPipeline):
|
224 |
+
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
|
225 |
+
pipe, prompt
|
226 |
+
)
|
227 |
+
|
228 |
+
# Set num inference steps
|
229 |
+
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
230 |
+
# save
|
231 |
+
|
232 |
+
latent_shape = (
|
233 |
+
(1, 4, 64, 64) if isinstance(pipe, StableDiffusionPipeline) else (1, 4, 64, 64)
|
234 |
+
)
|
235 |
+
generative_latent = torch.randn(latent_shape, device=device)
|
236 |
+
generative_latent *= pipe.scheduler.init_noise_sigma
|
237 |
+
|
238 |
+
latents = start_latents.clone()
|
239 |
+
|
240 |
+
latents = latents.repeat(len(prompt), 1, 1, 1)
|
241 |
+
# randomly initalize the 1st lantent for generation
|
242 |
+
|
243 |
+
latents[1] = generative_latent
|
244 |
+
# assume that the first latent is used for reconstruction
|
245 |
+
for i in tqdm(range(start_step, num_inference_steps), desc="Stylizing"):
|
246 |
+
|
247 |
+
if use_content_anchor:
|
248 |
+
latents[0] = intermediate_latents[(-i + 1)]
|
249 |
+
t = pipe.scheduler.timesteps[i]
|
250 |
+
|
251 |
+
# Expand the latents if we are doing classifier free guidance
|
252 |
+
latent_model_input = (
|
253 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
254 |
+
)
|
255 |
+
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
|
256 |
+
|
257 |
+
# Predict the noise residual
|
258 |
+
noise_pred = pipe.unet(
|
259 |
+
latent_model_input,
|
260 |
+
t,
|
261 |
+
encoder_hidden_states=text_embeddings,
|
262 |
+
added_cond_kwargs=added_cond_kwargs,
|
263 |
+
).sample
|
264 |
+
|
265 |
+
# Perform guidance
|
266 |
+
if do_classifier_free_guidance:
|
267 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
268 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
269 |
+
noise_pred_text - noise_pred_uncond
|
270 |
+
)
|
271 |
+
|
272 |
+
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
|
273 |
+
|
274 |
+
# Post-processing
|
275 |
+
# images = vae_decoder.postprocess(latents)
|
276 |
+
pipe.vae.to(dtype=torch.float32)
|
277 |
+
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
|
278 |
+
latents = 1 / pipe.vae.config.scaling_factor * latents
|
279 |
+
images = pipe.vae.decode(latents, return_dict=False)[0]
|
280 |
+
images = (images / 2 + 0.5).clamp(0, 1)
|
281 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
282 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
283 |
+
images = pipe.numpy_to_pil(images)
|
284 |
+
if isinstance(pipe, StableDiffusionXLPipeline):
|
285 |
+
pipe.vae.to(dtype=torch.float16)
|
286 |
+
|
287 |
+
return images
|
288 |
+
|
289 |
+
|
290 |
+
## Inversion
|
291 |
+
@torch.no_grad()
|
292 |
+
def invert(
|
293 |
+
pipe,
|
294 |
+
start_latents,
|
295 |
+
prompt,
|
296 |
+
guidance_scale=3.5,
|
297 |
+
num_inference_steps=50,
|
298 |
+
num_images_per_prompt=1,
|
299 |
+
do_classifier_free_guidance=True,
|
300 |
+
negative_prompt="",
|
301 |
+
device=device,
|
302 |
+
):
|
303 |
+
|
304 |
+
# Encode prompt
|
305 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
306 |
+
text_embeddings = pipe._encode_prompt(
|
307 |
+
prompt,
|
308 |
+
device,
|
309 |
+
num_images_per_prompt,
|
310 |
+
do_classifier_free_guidance,
|
311 |
+
negative_prompt,
|
312 |
+
)
|
313 |
+
added_cond_kwargs = None
|
314 |
+
latents = start_latents.clone().detach()
|
315 |
+
elif isinstance(pipe, StableDiffusionXLPipeline):
|
316 |
+
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
|
317 |
+
pipe, [prompt]
|
318 |
+
) # Latents are now the specified start latents
|
319 |
+
latents = start_latents.clone().detach().half()
|
320 |
+
|
321 |
+
# We'll keep a list of the inverted latents as the process goes on
|
322 |
+
intermediate_latents = []
|
323 |
+
|
324 |
+
# Set num inference steps
|
325 |
+
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
326 |
+
|
327 |
+
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
|
328 |
+
timesteps = reversed(pipe.scheduler.timesteps)
|
329 |
+
|
330 |
+
for i in tqdm(
|
331 |
+
range(1, num_inference_steps),
|
332 |
+
total=num_inference_steps - 1,
|
333 |
+
desc="DDIM Inversion",
|
334 |
+
):
|
335 |
+
|
336 |
+
# We'll skip the final iteration
|
337 |
+
if i >= num_inference_steps - 1:
|
338 |
+
continue
|
339 |
+
|
340 |
+
t = timesteps[i]
|
341 |
+
|
342 |
+
# Expand the latents if we are doing classifier free guidance
|
343 |
+
latent_model_input = (
|
344 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
345 |
+
)
|
346 |
+
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
|
347 |
+
|
348 |
+
# Predict the noise residual
|
349 |
+
noise_pred = pipe.unet(
|
350 |
+
latent_model_input,
|
351 |
+
t,
|
352 |
+
encoder_hidden_states=text_embeddings,
|
353 |
+
added_cond_kwargs=added_cond_kwargs,
|
354 |
+
).sample
|
355 |
+
|
356 |
+
# Perform guidance
|
357 |
+
if do_classifier_free_guidance:
|
358 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
359 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
360 |
+
noise_pred_text - noise_pred_uncond
|
361 |
+
)
|
362 |
+
|
363 |
+
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t
|
364 |
+
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1
|
365 |
+
alpha_t = pipe.scheduler.alphas_cumprod[current_t]
|
366 |
+
alpha_t_next = pipe.scheduler.alphas_cumprod[next_t]
|
367 |
+
|
368 |
+
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
|
369 |
+
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (
|
370 |
+
alpha_t_next.sqrt() / alpha_t.sqrt()
|
371 |
+
) + (1 - alpha_t_next).sqrt() * noise_pred
|
372 |
+
|
373 |
+
# Store
|
374 |
+
intermediate_latents.append(latents)
|
375 |
+
|
376 |
+
return torch.cat(intermediate_latents)
|
377 |
+
|
378 |
+
|
379 |
+
def style_image_with_inversion(
|
380 |
+
pipe,
|
381 |
+
input_image,
|
382 |
+
input_image_prompt,
|
383 |
+
style_prompt,
|
384 |
+
num_steps=100,
|
385 |
+
start_step=30,
|
386 |
+
guidance_scale=3.5,
|
387 |
+
disentangle=False,
|
388 |
+
share_attn=False,
|
389 |
+
share_cross_attn=False,
|
390 |
+
share_resnet_layers=[0, 1],
|
391 |
+
share_attn_layers=[],
|
392 |
+
c2s_layers=[0, 1],
|
393 |
+
share_key=True,
|
394 |
+
share_query=True,
|
395 |
+
share_value=False,
|
396 |
+
use_adain=True,
|
397 |
+
use_content_anchor=True,
|
398 |
+
output_dir: str = None,
|
399 |
+
resnet_mode: str = None,
|
400 |
+
return_intermediate=False,
|
401 |
+
intermediate_latents=None,
|
402 |
+
):
|
403 |
+
with torch.no_grad():
|
404 |
+
pipe.vae.to(dtype=torch.float32)
|
405 |
+
latent = pipe.vae.encode(input_image.to(device) * 2 - 1)
|
406 |
+
# latent = pipe.vae.encode(input_image.to(device))
|
407 |
+
l = pipe.vae.config.scaling_factor * latent.latent_dist.sample()
|
408 |
+
if isinstance(pipe, StableDiffusionXLPipeline):
|
409 |
+
pipe.vae.to(dtype=torch.float16)
|
410 |
+
if intermediate_latents is None:
|
411 |
+
inverted_latents = invert(
|
412 |
+
pipe, l, input_image_prompt, num_inference_steps=num_steps
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
inverted_latents = intermediate_latents
|
416 |
+
|
417 |
+
attn_injection.register_attention_processors(
|
418 |
+
pipe,
|
419 |
+
base_dir=output_dir,
|
420 |
+
resnet_mode=resnet_mode,
|
421 |
+
attn_mode="artist" if disentangle else "pnp",
|
422 |
+
disentangle=disentangle,
|
423 |
+
share_resblock=True,
|
424 |
+
share_attn=share_attn,
|
425 |
+
share_cross_attn=share_cross_attn,
|
426 |
+
share_resnet_layers=share_resnet_layers,
|
427 |
+
share_attn_layers=share_attn_layers,
|
428 |
+
share_key=share_key,
|
429 |
+
share_query=share_query,
|
430 |
+
share_value=share_value,
|
431 |
+
use_adain=use_adain,
|
432 |
+
c2s_layers=c2s_layers,
|
433 |
+
)
|
434 |
+
|
435 |
+
if disentangle:
|
436 |
+
final_im = sample_disentangled(
|
437 |
+
pipe,
|
438 |
+
style_prompt,
|
439 |
+
start_latents=inverted_latents[-(start_step + 1)][None],
|
440 |
+
intermediate_latents=inverted_latents,
|
441 |
+
start_step=start_step,
|
442 |
+
num_inference_steps=num_steps,
|
443 |
+
guidance_scale=guidance_scale,
|
444 |
+
use_content_anchor=use_content_anchor,
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
final_im = sample(
|
448 |
+
pipe,
|
449 |
+
style_prompt,
|
450 |
+
start_latents=inverted_latents[-(start_step + 1)][None],
|
451 |
+
intermediate_latents=inverted_latents,
|
452 |
+
start_step=start_step,
|
453 |
+
num_inference_steps=num_steps,
|
454 |
+
guidance_scale=guidance_scale,
|
455 |
+
)
|
456 |
+
|
457 |
+
# unset the attention processors
|
458 |
+
attn_injection.unset_attention_processors(
|
459 |
+
pipe,
|
460 |
+
unset_share_attn=True,
|
461 |
+
unset_share_resblock=True,
|
462 |
+
)
|
463 |
+
if return_intermediate:
|
464 |
+
return final_im, inverted_latents
|
465 |
+
return final_im
|
466 |
+
|
467 |
+
|
468 |
+
if __name__ == "__main__":
|
469 |
+
|
470 |
+
# Load a pipeline
|
471 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
472 |
+
"stabilityai/stable-diffusion-2-1-base"
|
473 |
+
).to(device)
|
474 |
+
|
475 |
+
# pipe = DiffusionPipeline.from_pretrained(
|
476 |
+
# # "playgroundai/playground-v2-1024px-aesthetic",
|
477 |
+
# torch_dtype=torch.float16,
|
478 |
+
# use_safetensors=True,
|
479 |
+
# add_watermarker=False,
|
480 |
+
# variant="fp16",
|
481 |
+
# )
|
482 |
+
# pipe.to("cuda")
|
483 |
+
|
484 |
+
# Set up a DDIM scheduler
|
485 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
486 |
+
|
487 |
+
parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf")
|
488 |
+
parser.add_argument(
|
489 |
+
"--config", type=str, default="config.yaml", help="Path to the config file"
|
490 |
+
)
|
491 |
+
parser.add_argument(
|
492 |
+
"--mode",
|
493 |
+
type=str,
|
494 |
+
default="dataset",
|
495 |
+
choices=["dataset", "cli", "app"],
|
496 |
+
help="Path to the config file",
|
497 |
+
)
|
498 |
+
parser.add_argument(
|
499 |
+
"--image_dir", type=str, default="test.png", help="Path to the image"
|
500 |
+
)
|
501 |
+
parser.add_argument(
|
502 |
+
"--prompt",
|
503 |
+
type=str,
|
504 |
+
default="an impressionist painting",
|
505 |
+
help="Stylization prompt",
|
506 |
+
)
|
507 |
+
# mode = "single_control_content"
|
508 |
+
args = parser.parse_args()
|
509 |
+
config_dir = args.config
|
510 |
+
mode = args.mode
|
511 |
+
# mode = "dataset"
|
512 |
+
out_name = ["content_delegation", "style_delegation", "style_out"]
|
513 |
+
|
514 |
+
if mode == "dataset":
|
515 |
+
cfg = OmegaConf.load(config_dir)
|
516 |
+
|
517 |
+
base_output_path = cfg.out_path
|
518 |
+
if not os.path.exists(cfg.out_path):
|
519 |
+
os.makedirs(cfg.out_path)
|
520 |
+
base_output_path = os.path.join(base_output_path, cfg.exp_name)
|
521 |
+
|
522 |
+
experiment_output_path = utils.exp_utils.make_unique_experiment_path(
|
523 |
+
base_output_path
|
524 |
+
)
|
525 |
+
|
526 |
+
# Save the experiment configuration
|
527 |
+
config_file_path = os.path.join(experiment_output_path, "config.yaml")
|
528 |
+
omegaconf.OmegaConf.save(cfg, config_file_path)
|
529 |
+
|
530 |
+
# Seed all
|
531 |
+
|
532 |
+
annotation = json.load(open(cfg.annotation))
|
533 |
+
with open(os.path.join(experiment_output_path, "annotation.json"), "w") as f:
|
534 |
+
json.dump(annotation, f)
|
535 |
+
for i, entry in enumerate(annotation):
|
536 |
+
utils.exp_utils.seed_all(cfg.seed)
|
537 |
+
image_path = entry["image_path"]
|
538 |
+
src_prompt = entry["source_prompt"]
|
539 |
+
tgt_prompt = entry["target_prompt"]
|
540 |
+
resolution = 512 if isinstance(pipe, StableDiffusionXLPipeline) else 512
|
541 |
+
input_image = utils.exp_utils.get_processed_image(
|
542 |
+
image_path, device, resolution
|
543 |
+
)
|
544 |
+
|
545 |
+
prompt_in = [
|
546 |
+
src_prompt, # reconstruction
|
547 |
+
tgt_prompt, # uncontrolled style
|
548 |
+
"", # controlled style
|
549 |
+
]
|
550 |
+
|
551 |
+
imgs = style_image_with_inversion(
|
552 |
+
pipe,
|
553 |
+
input_image,
|
554 |
+
src_prompt,
|
555 |
+
style_prompt=prompt_in,
|
556 |
+
num_steps=cfg.num_steps,
|
557 |
+
start_step=cfg.start_step,
|
558 |
+
guidance_scale=cfg.style_cfg_scale,
|
559 |
+
disentangle=cfg.disentangle,
|
560 |
+
resnet_mode=cfg.resnet_mode,
|
561 |
+
share_attn=cfg.share_attn,
|
562 |
+
share_cross_attn=cfg.share_cross_attn,
|
563 |
+
share_resnet_layers=cfg.share_resnet_layers,
|
564 |
+
share_attn_layers=cfg.share_attn_layers,
|
565 |
+
share_key=cfg.share_key,
|
566 |
+
share_query=cfg.share_query,
|
567 |
+
share_value=cfg.share_value,
|
568 |
+
use_content_anchor=cfg.use_content_anchor,
|
569 |
+
use_adain=cfg.use_adain,
|
570 |
+
output_dir=experiment_output_path,
|
571 |
+
)
|
572 |
+
|
573 |
+
for j, img in enumerate(imgs):
|
574 |
+
img.save(f"{experiment_output_path}/out_{i}_{out_name[j]}.png")
|
575 |
+
print(
|
576 |
+
f"Image saved as {experiment_output_path}/out_{i}_{out_name[j]}.png"
|
577 |
+
)
|
578 |
+
elif mode == "cli":
|
579 |
+
cfg = OmegaConf.load(config_dir)
|
580 |
+
utils.exp_utils.seed_all(cfg.seed)
|
581 |
+
image = utils.exp_utils.get_processed_image(args.image_dir, device, 512)
|
582 |
+
tgt_prompt = args.prompt
|
583 |
+
src_prompt = ""
|
584 |
+
prompt_in = [
|
585 |
+
"", # reconstruction
|
586 |
+
tgt_prompt, # uncontrolled style
|
587 |
+
"", # controlled style
|
588 |
+
]
|
589 |
+
out_dir = "./out"
|
590 |
+
os.makedirs(out_dir, exist_ok=True)
|
591 |
+
imgs = style_image_with_inversion(
|
592 |
+
pipe,
|
593 |
+
image,
|
594 |
+
src_prompt,
|
595 |
+
style_prompt=prompt_in,
|
596 |
+
num_steps=cfg.num_steps,
|
597 |
+
start_step=cfg.start_step,
|
598 |
+
guidance_scale=cfg.style_cfg_scale,
|
599 |
+
disentangle=cfg.disentangle,
|
600 |
+
resnet_mode=cfg.resnet_mode,
|
601 |
+
share_attn=cfg.share_attn,
|
602 |
+
share_cross_attn=cfg.share_cross_attn,
|
603 |
+
share_resnet_layers=cfg.share_resnet_layers,
|
604 |
+
share_attn_layers=cfg.share_attn_layers,
|
605 |
+
share_key=cfg.share_key,
|
606 |
+
share_query=cfg.share_query,
|
607 |
+
share_value=cfg.share_value,
|
608 |
+
use_content_anchor=cfg.use_content_anchor,
|
609 |
+
use_adain=cfg.use_adain,
|
610 |
+
output_dir=out_dir,
|
611 |
+
)
|
612 |
+
image_base_name = os.path.basename(args.image_dir).split(".")[0]
|
613 |
+
for j, img in enumerate(imgs):
|
614 |
+
img.save(f"{out_dir}/{image_base_name}_out_{out_name[j]}.png")
|
615 |
+
print(f"Image saved as {out_dir}/{image_base_name}_out_{out_name[j]}.png")
|
616 |
+
elif mode == "app":
|
617 |
+
# gradio
|
618 |
+
import gradio as gr
|
619 |
+
|
620 |
+
def style_transfer_app(
|
621 |
+
prompt,
|
622 |
+
image,
|
623 |
+
cfg_scale=7.5,
|
624 |
+
num_content_layers=4,
|
625 |
+
num_style_layers=9,
|
626 |
+
seed=0,
|
627 |
+
progress=gr.Progress(track_tqdm=True),
|
628 |
+
):
|
629 |
+
utils.exp_utils.seed_all(seed)
|
630 |
+
image = utils.exp_utils.process_image(image, device, 512)
|
631 |
+
|
632 |
+
tgt_prompt = prompt
|
633 |
+
src_prompt = ""
|
634 |
+
prompt_in = [
|
635 |
+
"", # reconstruction
|
636 |
+
tgt_prompt, # uncontrolled style
|
637 |
+
"", # controlled style
|
638 |
+
]
|
639 |
+
|
640 |
+
share_resnet_layers = (
|
641 |
+
list(range(num_content_layers)) if num_content_layers != 0 else None
|
642 |
+
)
|
643 |
+
share_attn_layers = (
|
644 |
+
list(range(num_style_layers)) if num_style_layers != 0 else None
|
645 |
+
)
|
646 |
+
imgs = style_image_with_inversion(
|
647 |
+
pipe,
|
648 |
+
image,
|
649 |
+
src_prompt,
|
650 |
+
style_prompt=prompt_in,
|
651 |
+
num_steps=50,
|
652 |
+
start_step=0,
|
653 |
+
guidance_scale=cfg_scale,
|
654 |
+
disentangle=True,
|
655 |
+
resnet_mode="hidden",
|
656 |
+
share_attn=True,
|
657 |
+
share_cross_attn=True,
|
658 |
+
share_resnet_layers=share_resnet_layers,
|
659 |
+
share_attn_layers=share_attn_layers,
|
660 |
+
share_key=True,
|
661 |
+
share_query=True,
|
662 |
+
share_value=False,
|
663 |
+
use_content_anchor=True,
|
664 |
+
use_adain=True,
|
665 |
+
output_dir="./",
|
666 |
+
)
|
667 |
+
|
668 |
+
return imgs[2]
|
669 |
+
|
670 |
+
# load examples
|
671 |
+
examples = []
|
672 |
+
annotation = json.load(open("data/example/annotation.json"))
|
673 |
+
for entry in annotation:
|
674 |
+
image = utils.exp_utils.get_processed_image(
|
675 |
+
entry["image_path"], device, 512
|
676 |
+
)
|
677 |
+
image = transforms.ToPILImage()(image[0])
|
678 |
+
|
679 |
+
examples.append([entry["target_prompt"], image, None, None, None])
|
680 |
+
|
681 |
+
text_input = gr.Textbox(
|
682 |
+
value="An impressionist painting",
|
683 |
+
label="Text Prompt",
|
684 |
+
info="Describe the style you want to apply to the image, do not include the description of the image content itself",
|
685 |
+
lines=2,
|
686 |
+
placeholder="Enter a text prompt",
|
687 |
+
)
|
688 |
+
image_input = gr.Image(
|
689 |
+
height="80%",
|
690 |
+
width="80%",
|
691 |
+
label="Content image (will be resized to 512x512)",
|
692 |
+
interactive=True,
|
693 |
+
)
|
694 |
+
cfg_slider = gr.Slider(
|
695 |
+
0,
|
696 |
+
15,
|
697 |
+
value=7.5,
|
698 |
+
label="Classifier Free Guidance (CFG) Scale",
|
699 |
+
info="higher values give more style, 7.5 should be good for most cases",
|
700 |
+
)
|
701 |
+
content_slider = gr.Slider(
|
702 |
+
0,
|
703 |
+
9,
|
704 |
+
value=4,
|
705 |
+
step=1,
|
706 |
+
label="Number of content control layer",
|
707 |
+
info="higher values make it more similar to original image. Default to control first 4 layers",
|
708 |
+
)
|
709 |
+
style_slider = gr.Slider(
|
710 |
+
0,
|
711 |
+
9,
|
712 |
+
value=9,
|
713 |
+
step=1,
|
714 |
+
label="Number of style control layer",
|
715 |
+
info="higher values make it more similar to target style. Default to control first 9 layers, usually not necessary to change.",
|
716 |
+
)
|
717 |
+
seed_slider = gr.Slider(
|
718 |
+
0,
|
719 |
+
100,
|
720 |
+
value=0,
|
721 |
+
step=1,
|
722 |
+
label="Seed",
|
723 |
+
info="Random seed for the model",
|
724 |
+
)
|
725 |
+
app = gr.Interface(
|
726 |
+
fn=style_transfer_app,
|
727 |
+
inputs=[
|
728 |
+
text_input,
|
729 |
+
image_input,
|
730 |
+
cfg_slider,
|
731 |
+
content_slider,
|
732 |
+
style_slider,
|
733 |
+
seed_slider,
|
734 |
+
],
|
735 |
+
outputs=["image"],
|
736 |
+
title="Artist Interactive Demo",
|
737 |
+
examples=examples,
|
738 |
+
)
|
739 |
+
app.launch()
|
lpipsPyTorch/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from .modules.lpips import LPIPS
|
4 |
+
|
5 |
+
|
6 |
+
def lpips(x: torch.Tensor,
|
7 |
+
y: torch.Tensor,
|
8 |
+
net_type: str = 'alex',
|
9 |
+
version: str = '0.1'):
|
10 |
+
r"""Function that measures
|
11 |
+
Learned Perceptual Image Patch Similarity (LPIPS).
|
12 |
+
|
13 |
+
Arguments:
|
14 |
+
x, y (torch.Tensor): the input tensors to compare.
|
15 |
+
net_type (str): the network type to compare the features:
|
16 |
+
'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
|
17 |
+
version (str): the version of LPIPS. Default: 0.1.
|
18 |
+
"""
|
19 |
+
device = x.device
|
20 |
+
criterion = LPIPS(net_type, version).to(device)
|
21 |
+
return criterion(x, y)
|
lpipsPyTorch/modules/lpips.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .networks import get_network, LinLayers
|
5 |
+
from .utils import get_state_dict
|
6 |
+
|
7 |
+
|
8 |
+
class LPIPS(nn.Module):
|
9 |
+
r"""Creates a criterion that measures
|
10 |
+
Learned Perceptual Image Patch Similarity (LPIPS).
|
11 |
+
|
12 |
+
Arguments:
|
13 |
+
net_type (str): the network type to compare the features:
|
14 |
+
'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
|
15 |
+
version (str): the version of LPIPS. Default: 0.1.
|
16 |
+
"""
|
17 |
+
def __init__(self, net_type: str = 'alex', version: str = '0.1'):
|
18 |
+
|
19 |
+
assert version in ['0.1'], 'v0.1 is only supported now'
|
20 |
+
|
21 |
+
super(LPIPS, self).__init__()
|
22 |
+
|
23 |
+
# pretrained network
|
24 |
+
self.net = get_network(net_type)
|
25 |
+
|
26 |
+
# linear layers
|
27 |
+
self.lin = LinLayers(self.net.n_channels_list)
|
28 |
+
self.lin.load_state_dict(get_state_dict(net_type, version))
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor, y: torch.Tensor):
|
31 |
+
feat_x, feat_y = self.net(x), self.net(y)
|
32 |
+
|
33 |
+
diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)]
|
34 |
+
res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)]
|
35 |
+
|
36 |
+
return torch.sum(torch.cat(res, 0), 0, True)
|
lpipsPyTorch/modules/networks.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence
|
2 |
+
|
3 |
+
from itertools import chain
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision import models
|
8 |
+
|
9 |
+
from .utils import normalize_activation
|
10 |
+
|
11 |
+
|
12 |
+
def get_network(net_type: str):
|
13 |
+
if net_type == 'alex':
|
14 |
+
return AlexNet()
|
15 |
+
elif net_type == 'squeeze':
|
16 |
+
return SqueezeNet()
|
17 |
+
elif net_type == 'vgg':
|
18 |
+
return VGG16()
|
19 |
+
else:
|
20 |
+
raise NotImplementedError('choose net_type from [alex, squeeze, vgg].')
|
21 |
+
|
22 |
+
|
23 |
+
class LinLayers(nn.ModuleList):
|
24 |
+
def __init__(self, n_channels_list: Sequence[int]):
|
25 |
+
super(LinLayers, self).__init__([
|
26 |
+
nn.Sequential(
|
27 |
+
nn.Identity(),
|
28 |
+
nn.Conv2d(nc, 1, 1, 1, 0, bias=False)
|
29 |
+
) for nc in n_channels_list
|
30 |
+
])
|
31 |
+
|
32 |
+
for param in self.parameters():
|
33 |
+
param.requires_grad = False
|
34 |
+
|
35 |
+
|
36 |
+
class BaseNet(nn.Module):
|
37 |
+
def __init__(self):
|
38 |
+
super(BaseNet, self).__init__()
|
39 |
+
|
40 |
+
# register buffer
|
41 |
+
self.register_buffer(
|
42 |
+
'mean', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
43 |
+
self.register_buffer(
|
44 |
+
'std', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
45 |
+
|
46 |
+
def set_requires_grad(self, state: bool):
|
47 |
+
for param in chain(self.parameters(), self.buffers()):
|
48 |
+
param.requires_grad = state
|
49 |
+
|
50 |
+
def z_score(self, x: torch.Tensor):
|
51 |
+
return (x - self.mean) / self.std
|
52 |
+
|
53 |
+
def forward(self, x: torch.Tensor):
|
54 |
+
x = self.z_score(x)
|
55 |
+
|
56 |
+
output = []
|
57 |
+
for i, (_, layer) in enumerate(self.layers._modules.items(), 1):
|
58 |
+
x = layer(x)
|
59 |
+
if i in self.target_layers:
|
60 |
+
output.append(normalize_activation(x))
|
61 |
+
if len(output) == len(self.target_layers):
|
62 |
+
break
|
63 |
+
return output
|
64 |
+
|
65 |
+
|
66 |
+
class SqueezeNet(BaseNet):
|
67 |
+
def __init__(self):
|
68 |
+
super(SqueezeNet, self).__init__()
|
69 |
+
|
70 |
+
self.layers = models.squeezenet1_1(True).features
|
71 |
+
self.target_layers = [2, 5, 8, 10, 11, 12, 13]
|
72 |
+
self.n_channels_list = [64, 128, 256, 384, 384, 512, 512]
|
73 |
+
|
74 |
+
self.set_requires_grad(False)
|
75 |
+
|
76 |
+
|
77 |
+
class AlexNet(BaseNet):
|
78 |
+
def __init__(self):
|
79 |
+
super(AlexNet, self).__init__()
|
80 |
+
|
81 |
+
self.layers = models.alexnet(True).features
|
82 |
+
self.target_layers = [2, 5, 8, 10, 12]
|
83 |
+
self.n_channels_list = [64, 192, 384, 256, 256]
|
84 |
+
|
85 |
+
self.set_requires_grad(False)
|
86 |
+
|
87 |
+
|
88 |
+
class VGG16(BaseNet):
|
89 |
+
def __init__(self):
|
90 |
+
super(VGG16, self).__init__()
|
91 |
+
|
92 |
+
self.layers = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features
|
93 |
+
self.target_layers = [4, 9, 16, 23, 30]
|
94 |
+
self.n_channels_list = [64, 128, 256, 512, 512]
|
95 |
+
|
96 |
+
self.set_requires_grad(False)
|
lpipsPyTorch/modules/utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def normalize_activation(x, eps=1e-10):
|
7 |
+
norm_factor = torch.sqrt(torch.sum(x ** 2, dim=1, keepdim=True))
|
8 |
+
return x / (norm_factor + eps)
|
9 |
+
|
10 |
+
|
11 |
+
def get_state_dict(net_type: str = 'alex', version: str = '0.1'):
|
12 |
+
# build url
|
13 |
+
url = 'https://raw.githubusercontent.com/richzhang/PerceptualSimilarity/' \
|
14 |
+
+ f'master/lpips/weights/v{version}/{net_type}.pth'
|
15 |
+
|
16 |
+
# download
|
17 |
+
old_state_dict = torch.hub.load_state_dict_from_url(
|
18 |
+
url, progress=True,
|
19 |
+
map_location=None if torch.cuda.is_available() else torch.device('cpu')
|
20 |
+
)
|
21 |
+
|
22 |
+
# rename keys
|
23 |
+
new_state_dict = OrderedDict()
|
24 |
+
for key, val in old_state_dict.items():
|
25 |
+
new_key = key
|
26 |
+
new_key = new_key.replace('lin', '')
|
27 |
+
new_key = new_key.replace('model.', '')
|
28 |
+
new_state_dict[new_key] = val
|
29 |
+
|
30 |
+
return new_state_dict
|
models/attn_injection.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding : utf-8 -*-
|
2 |
+
# @FileName : attn_injection.py
|
3 |
+
# @Author : Ruixiang JIANG (Songrise)
|
4 |
+
# @Time : Mar 20, 2024
|
5 |
+
# @Github : https://github.com/songrise
|
6 |
+
# @Description: implement attention dump and attention injection for CPSD
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.nn import functional as nnf
|
15 |
+
from diffusers.models import attention_processor
|
16 |
+
import einops
|
17 |
+
from diffusers.models import unet_2d_condition, attention, transformer_2d, resnet
|
18 |
+
from diffusers.models.unets import unet_2d_blocks
|
19 |
+
|
20 |
+
# from diffusers.models.unet_2d import CrossAttnUpBlock2D
|
21 |
+
from typing import Optional, List
|
22 |
+
|
23 |
+
T = torch.Tensor
|
24 |
+
import os
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass(frozen=True)
|
28 |
+
class StyleAlignedArgs:
|
29 |
+
share_group_norm: bool = True
|
30 |
+
share_layer_norm: bool = (True,)
|
31 |
+
share_attention: bool = True
|
32 |
+
adain_queries: bool = True
|
33 |
+
adain_keys: bool = True
|
34 |
+
adain_values: bool = False
|
35 |
+
full_attention_share: bool = False
|
36 |
+
shared_score_scale: float = 1.0
|
37 |
+
shared_score_shift: float = 0.0
|
38 |
+
only_self_level: float = 0.0
|
39 |
+
|
40 |
+
|
41 |
+
def expand_first(
|
42 |
+
feat: T,
|
43 |
+
scale=1.0,
|
44 |
+
) -> T:
|
45 |
+
b = feat.shape[0]
|
46 |
+
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
|
47 |
+
if scale == 1:
|
48 |
+
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
|
49 |
+
else:
|
50 |
+
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
|
51 |
+
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
|
52 |
+
return feat_style.reshape(*feat.shape)
|
53 |
+
|
54 |
+
|
55 |
+
def concat_first(feat: T, dim=2, scale=1.0) -> T:
|
56 |
+
feat_style = expand_first(feat, scale=scale)
|
57 |
+
return torch.cat((feat, feat_style), dim=dim)
|
58 |
+
|
59 |
+
|
60 |
+
def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
|
61 |
+
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
|
62 |
+
feat_mean = feat.mean(dim=-2, keepdims=True)
|
63 |
+
return feat_mean, feat_std
|
64 |
+
|
65 |
+
|
66 |
+
def adain(feat: T) -> T:
|
67 |
+
feat_mean, feat_std = calc_mean_std(feat)
|
68 |
+
feat_style_mean = expand_first(feat_mean)
|
69 |
+
feat_style_std = expand_first(feat_std)
|
70 |
+
feat = (feat - feat_mean) / feat_std
|
71 |
+
feat = feat * feat_style_std + feat_style_mean
|
72 |
+
return feat
|
73 |
+
|
74 |
+
|
75 |
+
def my_adain(feat: T) -> T:
|
76 |
+
batch_size = feat.shape[0] // 2
|
77 |
+
feat_mean, feat_std = calc_mean_std(feat)
|
78 |
+
feat_uncond_content, feat_cond_content = feat[0], feat[batch_size]
|
79 |
+
|
80 |
+
feat_style_mean = torch.stack((feat_mean[1], feat_mean[batch_size + 1])).unsqueeze(
|
81 |
+
1
|
82 |
+
)
|
83 |
+
feat_style_mean = feat_style_mean.expand(2, batch_size, *feat_mean.shape[1:])
|
84 |
+
feat_style_mean = feat_style_mean.reshape(*feat_mean.shape) # (6, D)
|
85 |
+
|
86 |
+
feat_style_std = torch.stack((feat_std[1], feat_std[batch_size + 1])).unsqueeze(1)
|
87 |
+
feat_style_std = feat_style_std.expand(2, batch_size, *feat_std.shape[1:])
|
88 |
+
feat_style_std = feat_style_std.reshape(*feat_std.shape)
|
89 |
+
|
90 |
+
feat = (feat - feat_mean) / feat_std
|
91 |
+
feat = feat * feat_style_std + feat_style_mean
|
92 |
+
feat[0] = feat_uncond_content
|
93 |
+
feat[batch_size] = feat_cond_content
|
94 |
+
return feat
|
95 |
+
|
96 |
+
|
97 |
+
class DefaultAttentionProcessor(nn.Module):
|
98 |
+
|
99 |
+
def __init__(self):
|
100 |
+
super().__init__()
|
101 |
+
# self.processor = attention_processor.AttnProcessor2_0()
|
102 |
+
self.processor = attention_processor.AttnProcessor() # for torch 1.11.0
|
103 |
+
|
104 |
+
def __call__(
|
105 |
+
self,
|
106 |
+
attn: attention_processor.Attention,
|
107 |
+
hidden_states,
|
108 |
+
encoder_hidden_states=None,
|
109 |
+
attention_mask=None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
return self.processor(
|
113 |
+
attn, hidden_states, encoder_hidden_states, attention_mask
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
class ArtistAttentionProcessor(DefaultAttentionProcessor):
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
inject_query: bool = True,
|
121 |
+
inject_key: bool = True,
|
122 |
+
inject_value: bool = True,
|
123 |
+
use_adain: bool = False,
|
124 |
+
name: str = None,
|
125 |
+
use_content_to_style_injection=False,
|
126 |
+
):
|
127 |
+
super().__init__()
|
128 |
+
|
129 |
+
self.inject_query = inject_query
|
130 |
+
self.inject_key = inject_key
|
131 |
+
self.inject_value = inject_value
|
132 |
+
self.share_enabled = True
|
133 |
+
self.use_adain = use_adain
|
134 |
+
|
135 |
+
self.__custom_name = name
|
136 |
+
self.content_to_style_injection = use_content_to_style_injection
|
137 |
+
|
138 |
+
def __call__(
|
139 |
+
self,
|
140 |
+
attn: Attention,
|
141 |
+
hidden_states: torch.FloatTensor,
|
142 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
143 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
144 |
+
temb: Optional[torch.FloatTensor] = None,
|
145 |
+
scale: float = 1.0,
|
146 |
+
) -> torch.Tensor:
|
147 |
+
#######Code from original attention impl
|
148 |
+
residual = hidden_states
|
149 |
+
|
150 |
+
# args = () if USE_PEFT_BACKEND else (scale,)
|
151 |
+
args = ()
|
152 |
+
|
153 |
+
if attn.spatial_norm is not None:
|
154 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
155 |
+
|
156 |
+
input_ndim = hidden_states.ndim
|
157 |
+
|
158 |
+
if input_ndim == 4:
|
159 |
+
batch_size, channel, height, width = hidden_states.shape
|
160 |
+
hidden_states = hidden_states.view(
|
161 |
+
batch_size, channel, height * width
|
162 |
+
).transpose(1, 2)
|
163 |
+
|
164 |
+
batch_size, sequence_length, _ = (
|
165 |
+
hidden_states.shape
|
166 |
+
if encoder_hidden_states is None
|
167 |
+
else encoder_hidden_states.shape
|
168 |
+
)
|
169 |
+
attention_mask = attn.prepare_attention_mask(
|
170 |
+
attention_mask, sequence_length, batch_size
|
171 |
+
)
|
172 |
+
|
173 |
+
if attn.group_norm is not None:
|
174 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
175 |
+
1, 2
|
176 |
+
)
|
177 |
+
|
178 |
+
query = attn.to_q(hidden_states, *args)
|
179 |
+
|
180 |
+
if encoder_hidden_states is None:
|
181 |
+
encoder_hidden_states = hidden_states
|
182 |
+
elif attn.norm_cross:
|
183 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
184 |
+
encoder_hidden_states
|
185 |
+
)
|
186 |
+
|
187 |
+
key = attn.to_k(encoder_hidden_states, *args)
|
188 |
+
value = attn.to_v(encoder_hidden_states, *args)
|
189 |
+
######## inject begins here, here we assume the style image is always the 2nd instance in batch
|
190 |
+
batch_size = query.shape[0] // 2 # divide 2 since CFG is used
|
191 |
+
if self.share_enabled and batch_size > 1: # when == 1, no need to inject,
|
192 |
+
ref_q_uncond, ref_q_cond = query[1, ...].unsqueeze(0), query[
|
193 |
+
batch_size + 1, ...
|
194 |
+
].unsqueeze(0)
|
195 |
+
ref_k_uncond, ref_k_cond = key[1, ...].unsqueeze(0), key[
|
196 |
+
batch_size + 1, ...
|
197 |
+
].unsqueeze(0)
|
198 |
+
|
199 |
+
ref_v_uncond, ref_v_cond = value[1, ...].unsqueeze(0), value[
|
200 |
+
batch_size + 1, ...
|
201 |
+
].unsqueeze(0)
|
202 |
+
if self.inject_query:
|
203 |
+
if self.use_adain:
|
204 |
+
query = my_adain(query)
|
205 |
+
|
206 |
+
if self.content_to_style_injection:
|
207 |
+
content_v_uncond = value[0, ...].unsqueeze(0)
|
208 |
+
content_v_cond = value[batch_size, ...].unsqueeze(0)
|
209 |
+
query[1] = content_v_uncond
|
210 |
+
query[batch_size + 1] = content_v_cond
|
211 |
+
else:
|
212 |
+
query[2] = ref_q_uncond
|
213 |
+
query[batch_size + 2] = ref_q_cond
|
214 |
+
if self.inject_key:
|
215 |
+
if self.use_adain:
|
216 |
+
key = my_adain(key)
|
217 |
+
else:
|
218 |
+
key[2] = ref_k_uncond
|
219 |
+
key[batch_size + 2] = ref_k_cond
|
220 |
+
|
221 |
+
if self.inject_value:
|
222 |
+
if self.use_adain:
|
223 |
+
value = my_adain(value)
|
224 |
+
else:
|
225 |
+
value[2] = ref_v_uncond
|
226 |
+
value[batch_size + 2] = ref_v_cond
|
227 |
+
|
228 |
+
query = attn.head_to_batch_dim(query)
|
229 |
+
key = attn.head_to_batch_dim(key)
|
230 |
+
value = attn.head_to_batch_dim(value)
|
231 |
+
|
232 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
233 |
+
|
234 |
+
# inject here, swap the attention map
|
235 |
+
hidden_states = torch.bmm(attention_probs, value)
|
236 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
237 |
+
|
238 |
+
# linear proj
|
239 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
240 |
+
# dropout
|
241 |
+
hidden_states = attn.to_out[1](hidden_states)
|
242 |
+
|
243 |
+
if input_ndim == 4:
|
244 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
245 |
+
batch_size, channel, height, width
|
246 |
+
)
|
247 |
+
|
248 |
+
if attn.residual_connection:
|
249 |
+
hidden_states = hidden_states + residual
|
250 |
+
|
251 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
252 |
+
|
253 |
+
return hidden_states
|
254 |
+
|
255 |
+
|
256 |
+
class ArtistResBlockWrapper(nn.Module):
|
257 |
+
|
258 |
+
def __init__(
|
259 |
+
self, block: resnet.ResnetBlock2D, injection_method: str, name: str = None
|
260 |
+
):
|
261 |
+
super().__init__()
|
262 |
+
self.block = block
|
263 |
+
self.output_scale_factor = self.block.output_scale_factor
|
264 |
+
self.injection_method = injection_method
|
265 |
+
self.name = name
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
input_tensor: torch.FloatTensor,
|
270 |
+
temb: torch.FloatTensor,
|
271 |
+
scale: float = 1.0,
|
272 |
+
):
|
273 |
+
if self.injection_method == "hidden":
|
274 |
+
feat = self.block(
|
275 |
+
input_tensor, temb, scale
|
276 |
+
) # when disentangle, feat should be [recon, uncontrolled style, controlled style]
|
277 |
+
batch_size = feat.shape[0] // 2
|
278 |
+
if batch_size == 1:
|
279 |
+
return feat
|
280 |
+
|
281 |
+
# the features of the reconstruction
|
282 |
+
recon_feat_uncond, recon_feat_cond = feat[0, ...].unsqueeze(0), feat[
|
283 |
+
batch_size, ...
|
284 |
+
].unsqueeze(0)
|
285 |
+
# residual
|
286 |
+
input_tensor = self.block.conv_shortcut(input_tensor)
|
287 |
+
input_content_uncond, input_content_cond = input_tensor[0, ...].unsqueeze(
|
288 |
+
0
|
289 |
+
), input_tensor[batch_size, ...].unsqueeze(0)
|
290 |
+
# since feat = (input + h) / scale
|
291 |
+
recon_feat_uncond, recon_feat_cond = (
|
292 |
+
recon_feat_uncond * self.output_scale_factor,
|
293 |
+
recon_feat_cond * self.output_scale_factor,
|
294 |
+
)
|
295 |
+
h_content_uncond, h_content_cond = (
|
296 |
+
recon_feat_uncond - input_content_uncond,
|
297 |
+
recon_feat_cond - input_content_cond,
|
298 |
+
)
|
299 |
+
# only share the h, the residual is not shared
|
300 |
+
h_shared = torch.cat(
|
301 |
+
([h_content_uncond] * batch_size) + ([h_content_cond] * batch_size),
|
302 |
+
dim=0,
|
303 |
+
)
|
304 |
+
|
305 |
+
output_feat_shared = (input_tensor + h_shared) / self.output_scale_factor
|
306 |
+
# do not inject the feat for the 2nd instance, which is uncontrolled style
|
307 |
+
output_feat_shared[1] = feat[1]
|
308 |
+
output_feat_shared[batch_size + 1] = feat[batch_size + 1]
|
309 |
+
# uncomment to not inject content to controlled style
|
310 |
+
# output_feat_shared[2] = feat[2]
|
311 |
+
# output_feat_shared[batch_size + 2] = feat[batch_size + 2]
|
312 |
+
return output_feat_shared
|
313 |
+
else:
|
314 |
+
raise NotImplementedError(f"Unknown injection method {self.injection_method}")
|
315 |
+
|
316 |
+
|
317 |
+
class SharedResBlockWrapper(nn.Module):
|
318 |
+
def __init__(self, block: resnet.ResnetBlock2D):
|
319 |
+
super().__init__()
|
320 |
+
self.block = block
|
321 |
+
self.output_scale_factor = self.block.output_scale_factor
|
322 |
+
self.share_enabled = True
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
input_tensor: torch.FloatTensor,
|
327 |
+
temb: torch.FloatTensor,
|
328 |
+
scale: float = 1.0,
|
329 |
+
):
|
330 |
+
if self.share_enabled:
|
331 |
+
feat = self.block(input_tensor, temb, scale)
|
332 |
+
batch_size = feat.shape[0] // 2
|
333 |
+
if batch_size == 1:
|
334 |
+
return feat
|
335 |
+
|
336 |
+
# the features of the reconstruction
|
337 |
+
feat_uncond, feat_cond = feat[0, ...].unsqueeze(0), feat[
|
338 |
+
batch_size, ...
|
339 |
+
].unsqueeze(0)
|
340 |
+
# residual
|
341 |
+
input_tensor = self.block.conv_shortcut(input_tensor)
|
342 |
+
input_content_uncond, input_content_cond = input_tensor[0, ...].unsqueeze(
|
343 |
+
0
|
344 |
+
), input_tensor[batch_size, ...].unsqueeze(0)
|
345 |
+
# since feat = (input + h) / scale
|
346 |
+
feat_uncond, feat_cond = (
|
347 |
+
feat_uncond * self.output_scale_factor,
|
348 |
+
feat_cond * self.output_scale_factor,
|
349 |
+
)
|
350 |
+
h_content_uncond, h_content_cond = (
|
351 |
+
feat_uncond - input_content_uncond,
|
352 |
+
feat_cond - input_content_cond,
|
353 |
+
)
|
354 |
+
# only share the h, the residual is not shared
|
355 |
+
h_shared = torch.cat(
|
356 |
+
([h_content_uncond] * batch_size) + ([h_content_cond] * batch_size),
|
357 |
+
dim=0,
|
358 |
+
)
|
359 |
+
output_shared = (input_tensor + h_shared) / self.output_scale_factor
|
360 |
+
return output_shared
|
361 |
+
else:
|
362 |
+
return self.block(input_tensor, temb, scale)
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
def register_attention_processors(
|
368 |
+
pipe,
|
369 |
+
base_dir: str = None,
|
370 |
+
disentangle: bool = False,
|
371 |
+
attn_mode: str = "artist",
|
372 |
+
resnet_mode: str = "hidden",
|
373 |
+
share_resblock: bool = True,
|
374 |
+
share_attn: bool = True,
|
375 |
+
share_cross_attn: bool = False,
|
376 |
+
share_attn_layers: Optional[int] = None,
|
377 |
+
share_resnet_layers: Optional[int] = None,
|
378 |
+
c2s_layers: Optional[int] = [0, 1],
|
379 |
+
share_query: bool = True,
|
380 |
+
share_key: bool = True,
|
381 |
+
share_value: bool = True,
|
382 |
+
use_adain: bool = False,
|
383 |
+
):
|
384 |
+
unet: unet_2d_condition.UNet2DConditionModel = pipe.unet
|
385 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
386 |
+
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[
|
387 |
+
1:
|
388 |
+
] # skip the first block, which is UpBlock2D
|
389 |
+
elif isinstance(pipe, StableDiffusionXLPipeline):
|
390 |
+
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[:-1]
|
391 |
+
layer_idx_attn = 0
|
392 |
+
layer_idx_resnet = 0
|
393 |
+
for block in up_blocks:
|
394 |
+
# each block should have 3 transformer layer
|
395 |
+
# transformer_layer : transformer_2d.Transformer2DModel
|
396 |
+
if share_resblock:
|
397 |
+
if share_resnet_layers is not None:
|
398 |
+
resnet_wrappers = []
|
399 |
+
resnets = block.resnets
|
400 |
+
for resnet_block in resnets:
|
401 |
+
if layer_idx_resnet not in share_resnet_layers:
|
402 |
+
resnet_wrappers.append(
|
403 |
+
resnet_block
|
404 |
+
) # use original implementation
|
405 |
+
else:
|
406 |
+
if disentangle:
|
407 |
+
resnet_wrappers.append(
|
408 |
+
ArtistResBlockWrapper(
|
409 |
+
resnet_block,
|
410 |
+
injection_method=resnet_mode,
|
411 |
+
name=f"layer_{layer_idx_resnet}",
|
412 |
+
)
|
413 |
+
)
|
414 |
+
print(
|
415 |
+
f"Disentangle resnet {resnet_mode} set for layer {layer_idx_resnet}"
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
resnet_wrappers.append(SharedResBlockWrapper(resnet_block))
|
419 |
+
print(
|
420 |
+
f"Share resnet feature set for layer {layer_idx_resnet}"
|
421 |
+
)
|
422 |
+
|
423 |
+
layer_idx_resnet += 1
|
424 |
+
block.resnets = nn.ModuleList(
|
425 |
+
resnet_wrappers
|
426 |
+
) # actually apply the change
|
427 |
+
if share_attn:
|
428 |
+
for transformer_layer in block.attentions:
|
429 |
+
transformer_block: attention.BasicTransformerBlock = (
|
430 |
+
transformer_layer.transformer_blocks[0]
|
431 |
+
)
|
432 |
+
self_attn: attention_processor.Attention = transformer_block.attn1
|
433 |
+
# cross attn does not inject
|
434 |
+
cross_attn: attention_processor.Attention = transformer_block.attn2
|
435 |
+
|
436 |
+
if attn_mode == "artist":
|
437 |
+
if (
|
438 |
+
share_attn_layers is not None
|
439 |
+
and layer_idx_attn in share_attn_layers
|
440 |
+
):
|
441 |
+
if layer_idx_attn in c2s_layers:
|
442 |
+
content_to_style = True
|
443 |
+
else:
|
444 |
+
content_to_style = False
|
445 |
+
pnp_inject_processor = ArtistAttentionProcessor(
|
446 |
+
inject_query=share_query,
|
447 |
+
inject_key=share_key,
|
448 |
+
inject_value=share_value,
|
449 |
+
use_adain=use_adain,
|
450 |
+
name=f"layer_{layer_idx_attn}_self",
|
451 |
+
use_content_to_style_injection=content_to_style,
|
452 |
+
)
|
453 |
+
self_attn.set_processor(pnp_inject_processor)
|
454 |
+
print(
|
455 |
+
f"Disentangled Pnp inject processor set for self-attention in layer {layer_idx_attn} with c2s={content_to_style}"
|
456 |
+
)
|
457 |
+
if share_cross_attn:
|
458 |
+
cross_attn_processor = ArtistAttentionProcessor(
|
459 |
+
inject_query=False,
|
460 |
+
inject_key=True,
|
461 |
+
inject_value=True,
|
462 |
+
use_adain=False,
|
463 |
+
name=f"layer_{layer_idx_attn}_cross",
|
464 |
+
)
|
465 |
+
cross_attn.set_processor(cross_attn_processor)
|
466 |
+
print(
|
467 |
+
f"Disentangled Pnp inject processor set for cross-attention in layer {layer_idx_attn}"
|
468 |
+
)
|
469 |
+
layer_idx_attn += 1
|
470 |
+
|
471 |
+
|
472 |
+
def unset_attention_processors(
|
473 |
+
pipe,
|
474 |
+
unset_share_attn: bool = False,
|
475 |
+
unset_share_resblock: bool = False,
|
476 |
+
):
|
477 |
+
unet: unet_2d_condition.UNet2DConditionMode = pipe.unet
|
478 |
+
if isinstance(pipe, StableDiffusionPipeline):
|
479 |
+
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[
|
480 |
+
1:
|
481 |
+
] # skip the first block, which is UpBlock2D
|
482 |
+
elif isinstance(pipe, StableDiffusionXLPipeline):
|
483 |
+
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[:-1]
|
484 |
+
block_idx = 1
|
485 |
+
layer_idx = 0
|
486 |
+
for block in up_blocks:
|
487 |
+
if unset_share_resblock:
|
488 |
+
resnet_origs = []
|
489 |
+
resnets = block.resnets
|
490 |
+
for resnet_block in resnets:
|
491 |
+
if isinstance(resnet_block, SharedResBlockWrapper) or isinstance(
|
492 |
+
resnet_block, ArtistResBlockWrapper
|
493 |
+
):
|
494 |
+
resnet_origs.append(resnet_block.block)
|
495 |
+
else:
|
496 |
+
resnet_origs.append(resnet_block)
|
497 |
+
block.resnets = nn.ModuleList(resnet_origs)
|
498 |
+
if unset_share_attn:
|
499 |
+
for transformer_layer in block.attentions:
|
500 |
+
layer_idx += 1
|
501 |
+
transformer_block: attention.BasicTransformerBlock = (
|
502 |
+
transformer_layer.transformer_blocks[0]
|
503 |
+
)
|
504 |
+
self_attn: attention_processor.Attention = transformer_block.attn1
|
505 |
+
cross_attn: attention_processor.Attention = transformer_block.attn2
|
506 |
+
self_attn.set_processor(DefaultAttentionProcessor())
|
507 |
+
cross_attn.set_processor(DefaultAttentionProcessor())
|
508 |
+
block_idx += 1
|
509 |
+
layer_idx = 0
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
clip==1.0
|
2 |
+
diffusers==0.26.3
|
3 |
+
einops==0.8.0
|
4 |
+
gradio==4.39.0
|
5 |
+
matplotlib==3.5.2
|
6 |
+
numpy==1.22.4
|
7 |
+
omegaconf==2.3.0
|
8 |
+
Pillow==9.1.1
|
9 |
+
Pillow==10.4.0
|
10 |
+
Requests==2.32.3
|
11 |
+
torch==1.11.0+cu113
|
12 |
+
torchvision==0.12.0+cu113
|
13 |
+
tqdm==4.61.2
|
utils/exp_utils.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
import os
|
3 |
+
import PIL.Image as Image
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from torchvision import transforms
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision
|
9 |
+
|
10 |
+
|
11 |
+
def make_unique_experiment_path(base_dir: str) -> str:
|
12 |
+
"""
|
13 |
+
Create a unique directory in the base directory, named as the least unused number.
|
14 |
+
return: path to the unique directory
|
15 |
+
"""
|
16 |
+
if not os.path.exists(base_dir):
|
17 |
+
os.makedirs(base_dir)
|
18 |
+
|
19 |
+
# List all existing directories
|
20 |
+
existing_dirs = [
|
21 |
+
d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))
|
22 |
+
]
|
23 |
+
|
24 |
+
# Convert directory names to integers, filter out non-numeric names
|
25 |
+
existing_numbers = sorted([int(d) for d in existing_dirs if d.isdigit()])
|
26 |
+
|
27 |
+
# Find the least unused number
|
28 |
+
experiment_id = 1
|
29 |
+
for number in existing_numbers:
|
30 |
+
if number != experiment_id:
|
31 |
+
break
|
32 |
+
experiment_id += 1
|
33 |
+
|
34 |
+
# Create the new directory
|
35 |
+
experiment_output_path = os.path.join(base_dir, str(experiment_id))
|
36 |
+
os.makedirs(experiment_output_path)
|
37 |
+
|
38 |
+
return experiment_output_path
|
39 |
+
|
40 |
+
|
41 |
+
def get_processed_image(image_dir: str, device, resolution) -> torch.Tensor:
|
42 |
+
src_img = Image.open(image_dir)
|
43 |
+
src_img = transforms.ToTensor()(src_img).unsqueeze(0).to(device)
|
44 |
+
|
45 |
+
h, w = src_img.shape[-2:]
|
46 |
+
src_img_512 = torchvision.transforms.functional.pad(
|
47 |
+
src_img, ((resolution - w) // 2,), fill=0, padding_mode="constant"
|
48 |
+
)
|
49 |
+
input_image = F.interpolate(
|
50 |
+
src_img, (resolution, resolution), mode="bilinear", align_corners=False
|
51 |
+
)
|
52 |
+
# drop alpha channel if it exists
|
53 |
+
if input_image.shape[1] == 4:
|
54 |
+
input_image = input_image[:, :3]
|
55 |
+
|
56 |
+
return input_image
|
57 |
+
|
58 |
+
|
59 |
+
def process_image(image, device, resolution) -> torch.Tensor:
|
60 |
+
if isinstance(image, np.ndarray):
|
61 |
+
image = Image.fromarray(image)
|
62 |
+
src_img = image
|
63 |
+
src_img = transforms.ToTensor()(src_img).unsqueeze(0).to(device)
|
64 |
+
|
65 |
+
h, w = src_img.shape[-2:]
|
66 |
+
src_img_512 = torchvision.transforms.functional.pad(
|
67 |
+
src_img, ((resolution - w) // 2,), fill=0, padding_mode="constant"
|
68 |
+
)
|
69 |
+
input_image = F.interpolate(
|
70 |
+
src_img, (resolution, resolution), mode="bilinear", align_corners=False
|
71 |
+
)
|
72 |
+
# drop alpha channel if it exists
|
73 |
+
if input_image.shape[1] == 4:
|
74 |
+
input_image = input_image[:, :3]
|
75 |
+
|
76 |
+
return input_image
|
77 |
+
|
78 |
+
|
79 |
+
def seed_all(seed: int):
|
80 |
+
torch.manual_seed(seed)
|
81 |
+
np.random.seed(seed)
|
82 |
+
torch.cuda.manual_seed(seed)
|
83 |
+
torch.cuda.manual_seed_all(seed)
|
84 |
+
torch.backends.cudnn.deterministic = True
|
85 |
+
torch.backends.cudnn.benchmark = False
|
86 |
+
|
87 |
+
g_cpu = torch.Generator(device="cpu")
|
88 |
+
g_cpu.manual_seed(42)
|
89 |
+
|
90 |
+
|
91 |
+
def dump_tensor(tensor, filename):
|
92 |
+
with open(filename) as f:
|
93 |
+
torch.save(tensor, f)
|