Spaces:
Sleeping
Sleeping
File size: 7,593 Bytes
3ec9549 2609434 3ec9549 2609434 3ec9549 e4cf87a 3ec9549 f6cb372 0a6e4e2 3ec9549 0a6e4e2 f6cb372 15553b2 3ec9549 f6cb372 3ec9549 f6cb372 3ec9549 f6cb372 0a6e4e2 3ec9549 0a6e4e2 3ec9549 0a6e4e2 3ec9549 f6cb372 0a6e4e2 f6cb372 3ec9549 f6cb372 0a6e4e2 f6cb372 15553b2 f6cb372 3ec9549 f6cb372 3ec9549 15553b2 f6cb372 15553b2 f6cb372 3a52889 3ec9549 f6cb372 3ec9549 f6cb372 15553b2 f6cb372 3ec9549 f6cb372 3ec9549 15553b2 f6cb372 aaab29f 15553b2 f6cb372 3ec9549 f6cb372 dd36097 3ec9549 f6cb372 3ec9549 f6cb372 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from transformers import pipeline, AutoTokenizer, ElectraForPreTraining
import pandas as pd
import numpy as np
import torch
import streamlit as st
from annotated_text import annotated_text
USE_GPU = True
if USE_GPU and torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device('cpu')
MODEL_NAME_CHINESE = "IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese"
RTD_MODEL_NAME_CHINESE = "hfl/chinese-electra-180g-large-discriminator"
WORD_PROBABILITY_THRESHOLD = 0.05
TOP_K_WORDS = 10
@st.cache_resource
def get_model_chinese():
return pipeline("fill-mask", MODEL_NAME_CHINESE, device = device)
@st.cache_resource
def get_rtd_tokenizer_chinese():
return AutoTokenizer.from_pretrained(RTD_MODEL_NAME_CHINESE)
@st.cache_resource
def get_rtd_model_chinese():
return ElectraForPreTraining.from_pretrained(RTD_MODEL_NAME_CHINESE)
@st.cache_resource
def get_wordlist_chinese():
df = pd.read_csv('wordlist_chinese_v2.csv')
wordlist = df[df.assess == True]
return wordlist['Chinese'].tolist()
@st.cache_resource
def get_allowed_words():
df = pd.read_csv('allowed_words.csv')
return set(list(df['word']))
def assess_chinese(word, sentence):
print("Assessing Chinese")
number_of_chars = len(word)
assert number_of_chars == 2
allowed_words = get_allowed_words()
if sentence.lower().find(word.lower()) == -1:
print('Sentence does not contain the word!')
return
text = sentence.replace(word.lower(), "[MASK]"*number_of_chars)
top_k_prediction = []
candidates = mask_filler_chinese(text, top_k=TOP_K_WORDS)[0]
for candidate in candidates:
temp_text = text.replace("[MASK]", candidate['token_str'], 1)
second_predictions = mask_filler_chinese(temp_text, top_k=5)
for prediction in second_predictions:
prediction['token_str'] = candidate['token_str'] + prediction['token_str']
prediction['score'] = candidate['score'] * prediction['score']
top_k_prediction.extend(second_predictions)
top_k_prediction = sorted(top_k_prediction, key = lambda x: x['score'], reverse = True)[:(TOP_K_WORDS*5)]
norm_factor = 0
for output in top_k_prediction:
if output['token_str'] not in allowed_words:
norm_factor += output['score']
top_k_prediction_new = []
for output in top_k_prediction:
if output['token_str'] in allowed_words:
output['score'] = output['score']/(1-min(0.5,norm_factor))
top_k_prediction_new.append(output)
print (f"NORM_FACTOR: {norm_factor}")
# Get target word prediction
temp_text = text
output1 = mask_filler_chinese(text, targets=word[0])[0][0]
temp_text = text.replace("[MASK]", word[0], 1)
output2 = mask_filler_chinese(temp_text, targets = word[1])[0]
output2['token_str'] = output1['token_str'] + output2['token_str']
output2['score'] = output1['score'] * output2['score']
target_word_prediction = output2
target_word_prediction['score'] = target_word_prediction['score'] / (1-min(0.5,norm_factor))
score = target_word_prediction['score']
# append the original word if its not found in the results
top_k_prediction_filtered = [output for output in top_k_prediction_new if \
output['token_str'] == word]
if len(top_k_prediction_filtered) == 0:
top_k_prediction_new.extend([target_word_prediction])
return top_k_prediction_new, score
def assess_sentence(word, sentence):
return assess_chinese(word, sentence)
def get_annotated_sentence(sentence, errors):
if len(errors) == 0:
return sentence
output = ["Input sentence: "]
wrong_char_indices = [e[0].item() for e in errors]
curr_ind = 0
for i in range(len(wrong_char_indices)):
output.append(sentence[curr_ind:wrong_char_indices[i]])
output.append((sentence[wrong_char_indices[i]], "", "#F8C8DC"))
# output.append((sentence[wrong_char_indices[i]], " ", "#ff4b4b"))
curr_ind = wrong_char_indices[i] + 1
output.append(sentence[curr_ind:])
print(output)
return output
def get_word_errors(word, sentence):
tokens = rtd_tokenizer_chinese(sentence, return_tensors = 'pt', return_offsets_mapping = True)
scores = rtd_model_chinese(**rtd_tokenizer_chinese(sentence, return_tensors = 'pt'))[0][0]
errors = []
for i in range(len(scores)):
if scores[i] > 0:
errors.append(tokens['offset_mapping'][0][i])
print(errors)
return errors
def get_chinese_word():
possible_words = get_wordlist_chinese()
word = np.random.choice(possible_words)
return word
def get_word():
return get_chinese_word()
mask_filler_chinese = get_model_chinese()
#wordlist_chinese = get_wordlist_chinese()
rtd_tokenizer_chinese = get_rtd_tokenizer_chinese()
rtd_model_chinese = get_rtd_model_chinese()
def highlight_given_word(row):
color = '#ACE5EE' if row.Words == target_word else 'white'
return [f'background-color:{color}'] * len(row)
def get_top_5_results(top_k_prediction):
predictions_df = pd.DataFrame(top_k_prediction)
predictions_df = predictions_df.drop(columns=["token", "sequence"])
predictions_df = predictions_df.rename(columns={"score": "Probability", "token_str": "Words"})
if (predictions_df[:5].Words == target_word).sum() == 0:
print("target word not in top 5")
top_5_df = predictions_df[:5]
target_word_df = predictions_df[(predictions_df.Words == target_word)]
print(target_word_df)
top_5_df = pd.concat([top_5_df, target_word_df])
else:
top_5_df = predictions_df[:5]
top_5_df['Probability'] = top_5_df['Probability'].apply(lambda x: f"{x:.2%}")
return top_5_df
#### Streamlit Page
st.title("造句 Self-marking Demo")
if 'target_word' not in st.session_state:
st.session_state['target_word'] = get_word()
target_word = st.session_state['target_word']
target_word_ind = get_wordlist_chinese().index(target_word)
#st.write("Target word: ", target_word)
target_word = st.selectbox("Choose a word:", get_wordlist_chinese(), index = target_word_ind)
if st.button("Get random word"):
st.session_state['target_word'] = get_word()
st.experimental_rerun()
st.subheader("Form your sentence and input below!")
sentence = st.text_input('Enter your sentence here', placeholder="Enter your sentence here!")
if st.button("Grade"):
if sentence.find(target_word) == -1:
st.error("Error: Sentence must include the target word!")
top_k_prediction, score = assess_sentence(target_word, sentence)
with open('./result01.json', 'w') as outfile:
outfile.write(str(top_k_prediction))
errors = get_word_errors(target_word, sentence)
annotated_sentence = get_annotated_sentence(sentence, errors)
annotated_text(annotated_sentence)
st.write(f"Probability score: {score:.1%}. (Target: {WORD_PROBABILITY_THRESHOLD:.1%})")
# st.write(f"Target probability: {WORD_PROBABILITY_THRESHOLD:.1%}")
predictions_df = get_top_5_results(top_k_prediction)
df_style = predictions_df.style.apply(highlight_given_word, axis=1)
if (score >= WORD_PROBABILITY_THRESHOLD):
# st.balloons()
if (len(errors) == 0):
st.success("Yay good job! 🕺 Practice again with other words", icon="✅")
else:
st.warning("Potential word errors detected. Try again?")
else:
st.warning("Probability score too low. Maybe try again?")
st.table(df_style)
|