Spaces:
Sleeping
Sleeping
More model options
Browse files
app.py
CHANGED
@@ -3,12 +3,9 @@
|
|
3 |
import types
|
4 |
|
5 |
import bibtexparser
|
6 |
-
import csv
|
7 |
import gender_guesser.detector
|
8 |
import nameparser
|
9 |
-
import operator
|
10 |
import pandas
|
11 |
-
import pathlib
|
12 |
import plotly.express
|
13 |
import streamlit
|
14 |
import st_aggrid
|
@@ -24,20 +21,6 @@ class References(object):
|
|
24 |
self.ethnicity_results = {key: 0 for key in self.race_options}
|
25 |
self.raw_results = pandas.DataFrame(columns=["First Name", "Last Name", "Title"])
|
26 |
|
27 |
-
csv_path = pathlib.Path(__file__).parent / 'data' / 'Names_2010Census.csv'
|
28 |
-
|
29 |
-
self.ethnicity_lookup = {}
|
30 |
-
with open(csv_path) as csv_file:
|
31 |
-
reader = csv.DictReader(csv_file)
|
32 |
-
for row in reader:
|
33 |
-
self.ethnicity_lookup[row['name']] = {}
|
34 |
-
for race in self.race_options[:-1]:
|
35 |
-
try:
|
36 |
-
value = float(row[race])
|
37 |
-
except ValueError:
|
38 |
-
value = 0
|
39 |
-
self.ethnicity_lookup[row['name']][race] = value
|
40 |
-
|
41 |
# Parse names from input
|
42 |
self.reference_text = reference_text
|
43 |
self.references = bibtexparser.loads(reference_text)
|
@@ -50,16 +33,8 @@ class References(object):
|
|
50 |
|
51 |
def infer_ethnicity(self):
|
52 |
self.raw_results = ethnicolr.pred_census_ln(self.raw_results, 'Last Name', 2010)
|
53 |
-
# Get ethnicity
|
54 |
-
most_likely_race = []
|
55 |
-
for name in self.raw_results['Last Name']:
|
56 |
-
if name.upper() in self.ethnicity_lookup:
|
57 |
-
rr = max(self.ethnicity_lookup[name.upper()].items(), key=operator.itemgetter(1))[0]
|
58 |
-
most_likely_race.append(rr)
|
59 |
-
else:
|
60 |
-
most_likely_race.append('race_unknown')
|
61 |
self.raw_results['Most Likely Ethnicity'] = self.raw_results['race']
|
62 |
-
|
63 |
|
64 |
for i in self.raw_results['Most Likely Ethnicity']:
|
65 |
self.ethnicity_results[i] = self.ethnicity_results.get(i, 0) + 1
|
@@ -98,7 +73,12 @@ label_to_gender = {'male': "Very Likely Male",
|
|
98 |
"unknown": "Unknown (model inconclusive)",
|
99 |
"first_name_initial": "Unknown (first name initial only)"}
|
100 |
|
101 |
-
label_to_ethnicity = {
|
|
|
|
|
|
|
|
|
|
|
102 |
'pctblack': 'Black',
|
103 |
'pctapi': 'Asian or Pacific Islander',
|
104 |
'pctaian': 'American Indian or Alaskan Native',
|
|
|
3 |
import types
|
4 |
|
5 |
import bibtexparser
|
|
|
6 |
import gender_guesser.detector
|
7 |
import nameparser
|
|
|
8 |
import pandas
|
|
|
9 |
import plotly.express
|
10 |
import streamlit
|
11 |
import st_aggrid
|
|
|
21 |
self.ethnicity_results = {key: 0 for key in self.race_options}
|
22 |
self.raw_results = pandas.DataFrame(columns=["First Name", "Last Name", "Title"])
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Parse names from input
|
25 |
self.reference_text = reference_text
|
26 |
self.references = bibtexparser.loads(reference_text)
|
|
|
33 |
|
34 |
def infer_ethnicity(self):
|
35 |
self.raw_results = ethnicolr.pred_census_ln(self.raw_results, 'Last Name', 2010)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.raw_results['Most Likely Ethnicity'] = self.raw_results['race']
|
37 |
+
self.raw_results.drop(labels=['race', 'white', 'black', 'hispanic', 'api'])
|
38 |
|
39 |
for i in self.raw_results['Most Likely Ethnicity']:
|
40 |
self.ethnicity_results[i] = self.ethnicity_results.get(i, 0) + 1
|
|
|
73 |
"unknown": "Unknown (model inconclusive)",
|
74 |
"first_name_initial": "Unknown (first name initial only)"}
|
75 |
|
76 |
+
label_to_ethnicity = {
|
77 |
+
'white': 'White',
|
78 |
+
'black': 'Black',
|
79 |
+
'api': 'Asian or Pacific Islander',
|
80 |
+
'hispanic': 'Hispanic',
|
81 |
+
'pctwhite': 'White',
|
82 |
'pctblack': 'Black',
|
83 |
'pctapi': 'Asian or Pacific Islander',
|
84 |
'pctaian': 'American Indian or Alaskan Native',
|