Commit
·
9e671c6
1
Parent(s):
85321d7
Testing how to improve piecewise functions
Browse files
Data_Generation/Piecewise_Box_Functions.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import numpy as np
|
2 |
from scipy import signal
|
3 |
import math
|
4 |
-
|
5 |
-
|
6 |
def basic_box_array(image_size):
|
7 |
A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
8 |
# Creates the outside edges of the box
|
@@ -69,20 +69,75 @@ def hamburger_array(image_size):
|
|
69 |
# if array_new[i][j] == 1:
|
70 |
# A[i][j] = 1
|
71 |
# return A
|
72 |
-
def update_array(array_original, array_new
|
73 |
A = array_original
|
74 |
A[array_new == 1] = 1
|
75 |
return A
|
76 |
|
77 |
|
78 |
-
def add_pixels(array_original, additional_pixels):
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
A = array_original
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
from scipy import signal
|
3 |
import math
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import itertools
|
6 |
def basic_box_array(image_size):
|
7 |
A = np.ones((int(image_size), int(image_size))) # Initializes A matrix with 0 values
|
8 |
# Creates the outside edges of the box
|
|
|
69 |
# if array_new[i][j] == 1:
|
70 |
# A[i][j] = 1
|
71 |
# return A
|
72 |
+
def update_array(array_original, array_new):
|
73 |
A = array_original
|
74 |
A[array_new == 1] = 1
|
75 |
return A
|
76 |
|
77 |
|
78 |
+
# def add_pixels(array_original, additional_pixels):
|
79 |
+
# # Adds pixels to the thickness of each component of the box
|
80 |
+
# A = array_original
|
81 |
+
# filter = np.array(([0, 1, 0], [1, 1, 1], [0, 1, 0])) # This filter will only add value where there are pixels on
|
82 |
+
# # the top, bottom, left or right of a pixel
|
83 |
+
#
|
84 |
+
# # This filter adds thickness based on the desired number of additional pixels
|
85 |
+
# for item in range(additional_pixels):
|
86 |
+
# convolution = signal.convolve2d(A, filter, mode='same')
|
87 |
+
# A = np.where(convolution <= 1, convolution, 1)
|
88 |
+
# return A
|
89 |
+
|
90 |
+
|
91 |
+
def add_pixels(array_original, thickness):
|
92 |
A = array_original
|
93 |
+
# if thickness !=0:
|
94 |
+
|
95 |
+
# filter = np.array(([0, 1, 0], [1, 1, 1], [0, 1, 0]))
|
96 |
+
# filter = np.stack([filter] * additional_pixels, axis=-1)
|
97 |
+
filter_size = 2*thickness+1
|
98 |
+
filter = np.zeros((filter_size,filter_size))
|
99 |
+
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1
|
100 |
+
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1
|
101 |
+
|
102 |
+
# filter[0,0] = filter[-1,0] = filter[0,-1] = filter[-1,-1] = 0
|
103 |
+
print(filter)
|
104 |
+
convolution = signal.convolve2d(A, filter, mode='same')
|
105 |
+
A = np.where(convolution <= 1, convolution, 1)
|
106 |
+
return A
|
107 |
+
|
108 |
+
|
109 |
+
# def create_array(basic_box_thickness, forward_slash_thickness, back_slash_thickness, hamburger_thickness, hot_dog_thickness):
|
110 |
+
#
|
111 |
+
|
112 |
+
# TESTING
|
113 |
+
image_size = 9
|
114 |
+
# test = forward_slash_array(image_size)
|
115 |
+
test = hamburger_array((image_size))
|
116 |
+
back = back_slash_array((image_size))
|
117 |
+
hot = hot_dog_array(image_size)
|
118 |
+
forward = forward_slash_array(image_size)
|
119 |
+
basic = basic_box_array((image_size))
|
120 |
+
|
121 |
+
# test = update_array(test, back)
|
122 |
+
# test = update_array(test, hot)
|
123 |
+
# test = update_array(test, forward)
|
124 |
+
test = test + back + forward + hot + basic
|
125 |
+
test = np.array(test > 0, dtype=int)
|
126 |
+
|
127 |
+
# test = add_pixels(test, 1)
|
128 |
+
print(test)
|
129 |
+
plt.imshow(test)
|
130 |
+
plt.show()
|
131 |
+
|
132 |
+
|
133 |
+
# basic_box_thickness = np.linspace(0,14, num=15)
|
134 |
+
# print(basic_box_thickness)
|
135 |
+
# forward_slash_thickness = np.linspace(0,14, num=15)
|
136 |
+
# back_slash_thickness = np.linspace(0,14, num=15)
|
137 |
+
# hamburger_thickness = np.linspace(0,14, num=15)
|
138 |
+
# hot_dog_thickness =np.linspace(0,14, num=15)
|
139 |
+
# print(np.meshgrid((basic_box_thickness, forward_slash_thickness, back_slash_thickness, hamburger_thickness, hot_dog_thickness)))
|
140 |
+
|
141 |
+
# all_thicknesses = list(itertools.product(basic_box_thickness, repeat=5))
|
142 |
+
# print(all_thicknesses)
|
143 |
+
# print(np.shape(all_thicknesses))
|