Commit
·
716dc6a
1
Parent(s):
9c41b55
Added data download button, and incorporating code to use different arrays in the readmme file
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
|
3 |
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
5 |
-
|
6 |
|
7 |
import streamlit as st
|
8 |
from Data_Generation.Dataset_Generation_Functions import make_boxes
|
@@ -21,7 +21,7 @@ densities = np.linspace(0, 1, num=density_selection+1)[1:]
|
|
21 |
sample_basic_box = basic_box_array(image_size, 1)
|
22 |
sample_forward_slash_box = forward_slash_array(image_size, 1)
|
23 |
sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box])
|
24 |
-
print(sample_combined)
|
25 |
|
26 |
sample_density = np.array([sample_combined * density_value for density_value in densities])
|
27 |
|
@@ -32,9 +32,9 @@ sample_thickness = []
|
|
32 |
# print(sample_thickness)
|
33 |
for i in [1, 2, 3, 4]:
|
34 |
copy = sample_combined
|
35 |
-
print(i)
|
36 |
test = add_thickness(copy, i)
|
37 |
-
print(test)
|
38 |
sample_thickness.append(test)
|
39 |
# print(sample_thickness)
|
40 |
########################################################################################################################
|
@@ -117,9 +117,26 @@ indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_densit
|
|
117 |
plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
|
118 |
plt.show()
|
119 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
|
123 |
'''
|
124 |
|
125 |
# food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
|
|
|
2 |
|
3 |
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
|
7 |
import streamlit as st
|
8 |
from Data_Generation.Dataset_Generation_Functions import make_boxes
|
|
|
21 |
sample_basic_box = basic_box_array(image_size, 1)
|
22 |
sample_forward_slash_box = forward_slash_array(image_size, 1)
|
23 |
sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box])
|
24 |
+
# print(sample_combined)
|
25 |
|
26 |
sample_density = np.array([sample_combined * density_value for density_value in densities])
|
27 |
|
|
|
32 |
# print(sample_thickness)
|
33 |
for i in [1, 2, 3, 4]:
|
34 |
copy = sample_combined
|
35 |
+
# print(i)
|
36 |
test = add_thickness(copy, i)
|
37 |
+
# print(test)
|
38 |
sample_thickness.append(test)
|
39 |
# print(sample_thickness)
|
40 |
########################################################################################################################
|
|
|
117 |
plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
|
118 |
plt.show()
|
119 |
'''
|
120 |
+
# # Testing
|
121 |
+
# image_size = 8
|
122 |
+
# densities = [1]
|
123 |
+
|
124 |
+
if st.button('Generate Dataset'): # Generate the samples
|
125 |
+
boxes = make_boxes(image_size, densities)
|
126 |
+
box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
|
127 |
+
= list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
|
128 |
+
|
129 |
+
# Create a dataframe to convert the data to a csv file
|
130 |
+
dataframe = (pd.DataFrame((box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness)).T).astype(str)
|
131 |
+
|
132 |
+
# Rename the columns to the desired outputs
|
133 |
+
dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
|
134 |
|
135 |
+
csv = dataframe.to_csv('2D_Lattice.csv')
|
136 |
|
137 |
+
file = '2D_Lattice.csv'
|
138 |
|
139 |
+
st.download_button("Download Dataset", file, file_name='2D_Lattice.csv')
|
140 |
'''
|
141 |
|
142 |
# food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
|