marta-marta commited on
Commit
716dc6a
·
1 Parent(s): 9c41b55

Added data download button, and incorporating code to use different arrays in the readmme file

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -2,7 +2,7 @@
2
 
3
  import matplotlib.pyplot as plt
4
  import numpy as np
5
-
6
 
7
  import streamlit as st
8
  from Data_Generation.Dataset_Generation_Functions import make_boxes
@@ -21,7 +21,7 @@ densities = np.linspace(0, 1, num=density_selection+1)[1:]
21
  sample_basic_box = basic_box_array(image_size, 1)
22
  sample_forward_slash_box = forward_slash_array(image_size, 1)
23
  sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box])
24
- print(sample_combined)
25
 
26
  sample_density = np.array([sample_combined * density_value for density_value in densities])
27
 
@@ -32,9 +32,9 @@ sample_thickness = []
32
  # print(sample_thickness)
33
  for i in [1, 2, 3, 4]:
34
  copy = sample_combined
35
- print(i)
36
  test = add_thickness(copy, i)
37
- print(test)
38
  sample_thickness.append(test)
39
  # print(sample_thickness)
40
  ########################################################################################################################
@@ -117,9 +117,26 @@ indices = [i for i in range(len(box_arrays)) if box_density[i] == desired_densit
117
  plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
118
  plt.show()
119
  '''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
 
121
 
 
122
 
 
123
  '''
124
 
125
  # food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples
 
2
 
3
  import matplotlib.pyplot as plt
4
  import numpy as np
5
+ import pandas as pd
6
 
7
  import streamlit as st
8
  from Data_Generation.Dataset_Generation_Functions import make_boxes
 
21
  sample_basic_box = basic_box_array(image_size, 1)
22
  sample_forward_slash_box = forward_slash_array(image_size, 1)
23
  sample_combined = combine_arrays([sample_forward_slash_box, sample_basic_box])
24
+ # print(sample_combined)
25
 
26
  sample_density = np.array([sample_combined * density_value for density_value in densities])
27
 
 
32
  # print(sample_thickness)
33
  for i in [1, 2, 3, 4]:
34
  copy = sample_combined
35
+ # print(i)
36
  test = add_thickness(copy, i)
37
+ # print(test)
38
  sample_thickness.append(test)
39
  # print(sample_thickness)
40
  ########################################################################################################################
 
117
  plt.imshow(box_arrays[indices[0]], cmap='gray', vmin=0, vmax=1)
118
  plt.show()
119
  '''
120
+ # # Testing
121
+ # image_size = 8
122
+ # densities = [1]
123
+
124
+ if st.button('Generate Dataset'): # Generate the samples
125
+ boxes = make_boxes(image_size, densities)
126
+ box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness\
127
+ = list(zip(*boxes))[0], list(zip(*boxes))[1], list(zip(*boxes))[2], list(zip(*boxes))[3], list(zip(*boxes))[4], list(zip(*boxes))[5], list(zip(*boxes))[6]
128
+
129
+ # Create a dataframe to convert the data to a csv file
130
+ dataframe = (pd.DataFrame((box_arrays, box_density, basic_box_thickness, forward_slash_box_thickness, back_slash_box_thickness,hot_dog_box_thickness, hamburger_box_thickness)).T).astype(str)
131
+
132
+ # Rename the columns to the desired outputs
133
+ dataframe = dataframe.rename(columns={0: "Array", 1: "Density", 2:"Basic Box Thickness", 3:"Forward Slash Strut Thickness", 4:"Back Slash Strut Thickness", 5:"Vertical Strut Thickness", 6:"Horizontal Strut Thickness"})
134
 
135
+ csv = dataframe.to_csv('2D_Lattice.csv')
136
 
137
+ file = '2D_Lattice.csv'
138
 
139
+ st.download_button("Download Dataset", file, file_name='2D_Lattice.csv')
140
  '''
141
 
142
  # food = load_dataset("cmudrc/2d-lattices", split="train[:15]") # Loads the training data samples