Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
from transformers import pipeline
|
3 |
+
from numpy import random
|
4 |
+
import gradio as gr
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from torch import autocast
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Array with song cover art styles
|
11 |
+
image_input_styles = ["Random", "Pencil sketch", "Oil painting", "Pop art", "Piet Mondriaan"]
|
12 |
+
|
13 |
+
# Get image type for image input
|
14 |
+
"""
|
15 |
+
The default setting for the art style dropdown is "Random". The below function determines which style is chosen
|
16 |
+
If set to "Random", copy the art style array and remove "Random" to prevent "Random" from being a chosen art style
|
17 |
+
"""
|
18 |
+
def get_image_input(title, given_input_style):
|
19 |
+
if given_input_style == 'Random':
|
20 |
+
image_input_styles_new = image_input_styles.copy()
|
21 |
+
image_input_styles_new.pop(0)
|
22 |
+
random_choice = random.randint(len(image_input_styles_new)-1)
|
23 |
+
final_style = image_input_styles_new[random_choice]
|
24 |
+
else:
|
25 |
+
final_style = given_input_style
|
26 |
+
image_input = 'Cover for ' + title.lower() + ' in style of ' + final_style
|
27 |
+
return image_input, final_style
|
28 |
+
|
29 |
+
# Available models for generate lyrics pipeline
|
30 |
+
# checkpoint = 'wvangils/GPT-Medium-Beatles-Lyrics-finetuned-newlyrics'
|
31 |
+
# checkpoint = 'wvangils/GPT-Neo-125m-Beatles-Lyrics-finetuned-newlyrics'
|
32 |
+
checkpoint = 'wvangils/BLOOM-560m-Beatles-Lyrics-finetuned'
|
33 |
+
|
34 |
+
# Setup all the pipelines we need
|
35 |
+
title_generator = pipeline('summarization', model='czearing/story-to-title')
|
36 |
+
lyrics_generator = pipeline("text-generation", model=checkpoint)
|
37 |
+
|
38 |
+
# For the image generator we use stable diffusion from an existing HuggingFace space, Gradio accelerated backend
|
39 |
+
stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion-1")
|
40 |
+
|
41 |
+
# Create 4 images for the given prompt and receive the first one
|
42 |
+
# This function uses an existing HuggingFace space where the number of created images cannot be modified
|
43 |
+
def get_image(prompt):
|
44 |
+
gallery_dir = stable_diffusion(prompt, fn_index=2)
|
45 |
+
images = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)]
|
46 |
+
return [images[0]]
|
47 |
+
|
48 |
+
# Lyrics generation
|
49 |
+
def generate_beatles(input_prompt, temperature, top_p, given_input_style):
|
50 |
+
# Create generator for different models
|
51 |
+
generated_lyrics = lyrics_generator(input_prompt
|
52 |
+
, max_length = 100
|
53 |
+
, num_return_sequences = 1
|
54 |
+
, return_full_text = True
|
55 |
+
, temperature = temperature
|
56 |
+
, top_p = top_p # Default 1.0
|
57 |
+
, no_repeat_ngram_size = 3 # Default = 0
|
58 |
+
, repetition_penalty = 1.0 # Default = 1.0
|
59 |
+
)[0]["generated_text"]
|
60 |
+
|
61 |
+
# Put lyrics in the right form
|
62 |
+
lyrics_sentences = re.sub('\n', '. ', generated_lyrics)
|
63 |
+
|
64 |
+
# Create a title based on the generated lyrics
|
65 |
+
title = title_generator(lyrics_sentences, min_length=1, max_length=10, repetition_penalty=2.5)[0]['summary_text']
|
66 |
+
|
67 |
+
# Create an image based on the generated title
|
68 |
+
image_input, image_style = get_image_input(title, given_input_style)
|
69 |
+
|
70 |
+
# Generate the image
|
71 |
+
image = get_image(image_input)
|
72 |
+
return (title, generated_lyrics, image, image_style)
|
73 |
+
|
74 |
+
# Create textboxes for input and output
|
75 |
+
input_box = gr.Textbox(label="Write the start of a song here", placeholder="Write the start of a new song here", value="Looking out of my window", lines=2, max_lines=5)
|
76 |
+
gen_lyrics = gr.Textbox(label="Song lyrics", lines=15)
|
77 |
+
gen_title = gr.Textbox(label="Proposed songtitle", lines=1)
|
78 |
+
gen_image = gr.Gallery(label="Proposed song cover").style(grid=1, height="auto")
|
79 |
+
gen_image_style = gr.Textbox(label="Image style", lines=1)
|
80 |
+
|
81 |
+
# Layout and text around the app
|
82 |
+
title='Beatles lyrics generator'
|
83 |
+
description="<p style='text-align: center'>We've fine-tuned multiple language models on lyrics from The Beatles to generate Beatles-like text. Below are the results we obtained fine-tuning a GPT Neo model. After generation a title is generated using <a href='https://huggingface.co/czearing/story-to-title' target='_blank'>this model</a>. On top we use the generated title to suggest an album cover using <a href='https://huggingface.co/CompVis/stable-diffusion-v1-4' target='_blank'>Stable Diffusion 1.4</a>. Give it a try!</p>"
|
84 |
+
article="""<p style='text-align: left'>These text generation models that output Beatles-like text were created by data scientists working for <a href='https://cmotions.nl/' target="_blank">Cmotions.</a>
|
85 |
+
We tried several text generation models that we were able to load in Colab: a general <a href='https://huggingface.co/gpt2-medium' target='_blank'>GPT2-medium</a> model, the Eleuther AI small-sized GPT model <a href='https://huggingface.co/EleutherAI/gpt-neo-125M' target='_blank'>GPT-Neo</a> and the new kid on the block build by the <a href='https://bigscience.notion.site/BLOOM-BigScience-176B-Model-ad073ca07cdf479398d5f95d88e218c4' target='_blank'>Bigscience</a> initiative <a href='https://huggingface.co/bigscience/bloom-560m' target='_blank'>BLOOM 560m</a>.
|
86 |
+
Further we've put together a <a href='https://huggingface.co/datasets/cmotions/Beatles_lyrics' target='_blank'> Huggingface dataset</a> containing all known lyrics created by The Beatles. Currently we are fine-tuning models and are evaluating the results. Once finished we will publish a blog at this <a href='https://www.theanalyticslab.nl/blogs/' target='_blank'>location </a> with all the steps we took including a Python notebook using Huggingface.
|
87 |
+
The default output contains 100 tokens and has a repetition penalty of 1.0.
|
88 |
+
</p>"""
|
89 |
+
css = """
|
90 |
+
.gr-button-primary {
|
91 |
+
text-indent: -9999px;
|
92 |
+
line-height: 0;
|
93 |
+
}
|
94 |
+
.gr-button-primary:after {
|
95 |
+
content: "Beatlify!";
|
96 |
+
text-indent: 0;
|
97 |
+
display: block;
|
98 |
+
line-height: initial;
|
99 |
+
}
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Let users select their own temperature and top-p
|
103 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Change the temperature \r\n (higher temperature = more creative in lyrics generation, but posibbly less Beatly)", value=0.7, show_label=True) #high = sensitive for low probability tokens
|
104 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Change top probability of the next word \n (higher top probability = more words to choose from for the next word, but possibly less Beatly)", value=0.5, show_label=True)
|
105 |
+
given_input_style = gr.Dropdown(choices=image_input_styles, value="Random", label="Choose the art style for the lyrics cover", show_label=True)
|
106 |
+
|
107 |
+
# Use generate Beatles function in demo-app Gradio
|
108 |
+
gr.Interface(fn=generate_beatles
|
109 |
+
, inputs=[input_box, temperature, top_p, given_input_style]
|
110 |
+
, outputs=[gen_title, gen_lyrics, gen_image, gen_image_style]
|
111 |
+
, title=title
|
112 |
+
, css=css
|
113 |
+
, description=description
|
114 |
+
, article=article
|
115 |
+
, allow_flagging='never'
|
116 |
+
).launch()
|