Dawid Motyka commited on
Commit
f5d4fa9
·
1 Parent(s): 834d42f
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
 
3
  import numpy as np
@@ -10,7 +11,7 @@ from models import StanceEncoderModel
10
  CLASS_DICT = {0: 'FAVOR', 1: 'AGAINST', 2: 'NEITHER'}
11
 
12
  params = {'lang': 'pl',
13
- 'masked_lm_prompt': 4,}
14
 
15
 
16
  class StancePipeline(Pipeline):
@@ -19,7 +20,8 @@ class StancePipeline(Pipeline):
19
  return pipeline_parameters, {}, {}
20
 
21
  def preprocess(self, input):
22
- prompt_text, prompt_target = prepare_stance_texts([input['text'],], [input['target'],], params, self.tokenizer)
 
23
  inputs = self.tokenizer(prompt_text, prompt_target, return_tensors="pt", padding=True, truncation='only_first')
24
  return {'input_ids': inputs['input_ids'], 'attention_mask': inputs['attention_mask'],
25
  'sequence_ids': torch.tensor((np.array(inputs.sequence_ids()) == 1).astype(int)).unsqueeze(0)}
@@ -34,9 +36,11 @@ class StancePipeline(Pipeline):
34
  return {'stance': CLASS_DICT[probas.argmax(-1).item()], 'score': score}
35
 
36
 
37
- pipeline = StancePipeline(model=StanceEncoderModel.from_pretrained('clarin-knext/stance-pl-1'),
38
- tokenizer=AutoTokenizer.from_pretrained('clarin-knext/stance-pl-1'),
39
- batch_size=1)
 
 
40
 
41
 
42
  def predict(text, target):
@@ -53,4 +57,4 @@ gradio_app = gr.Interface(
53
  )
54
 
55
  if __name__ == "__main__":
56
- gradio_app.launch()
 
1
+ import os
2
  import gradio as gr
3
 
4
  import numpy as np
 
11
  CLASS_DICT = {0: 'FAVOR', 1: 'AGAINST', 2: 'NEITHER'}
12
 
13
  params = {'lang': 'pl',
14
+ 'masked_lm_prompt': 4, }
15
 
16
 
17
  class StancePipeline(Pipeline):
 
20
  return pipeline_parameters, {}, {}
21
 
22
  def preprocess(self, input):
23
+ prompt_text, prompt_target = prepare_stance_texts([input['text'], ], [input['target'], ], params,
24
+ self.tokenizer)
25
  inputs = self.tokenizer(prompt_text, prompt_target, return_tensors="pt", padding=True, truncation='only_first')
26
  return {'input_ids': inputs['input_ids'], 'attention_mask': inputs['attention_mask'],
27
  'sequence_ids': torch.tensor((np.array(inputs.sequence_ids()) == 1).astype(int)).unsqueeze(0)}
 
36
  return {'stance': CLASS_DICT[probas.argmax(-1).item()], 'score': score}
37
 
38
 
39
+ model = StanceEncoderModel.from_pretrained('clarin-knext/stance-pl-1',
40
+ use_auth_token=os.environ['TOKEN'])
41
+ tokenizer = AutoTokenizer.from_pretrained('clarin-knext/stance-pl-1',
42
+ use_auth_token=os.environ['TOKEN'])
43
+ pipeline = StancePipeline(model=model, tokenizer=tokenizer, batch_size=1)
44
 
45
 
46
  def predict(text, target):
 
57
  )
58
 
59
  if __name__ == "__main__":
60
+ gradio_app.launch()