Spaces:
Runtime error
Runtime error
City
commited on
Commit
·
9ac551a
1
Parent(s):
a23f9da
Sync with GitHub
Browse files- README.md +2 -4
- app.py → demo_score_gradio.py +56 -113
- inference.py +102 -0
- model.py +44 -44
- requirements.txt +3 -3
README.md
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
---
|
2 |
title: CityAesthetics Demo
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
8 |
-
app_file:
|
9 |
models: [city96/CityAesthetics]
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: CityAesthetics Demo
|
3 |
+
emoji: ✨
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
8 |
+
app_file: demo_score_gradio.py
|
9 |
models: [city96/CityAesthetics]
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
12 |
---
|
|
|
|
app.py → demo_score_gradio.py
RENAMED
@@ -1,113 +1,56 @@
|
|
1 |
-
import os
|
2 |
-
import
|
3 |
-
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
if os.path.isfile(os.path.join(path, fname)):
|
58 |
-
print("CityAesthetics: Using local model")
|
59 |
-
return os.path.join(path, fname)
|
60 |
-
|
61 |
-
# huggingface hub fallback
|
62 |
-
print("CityAesthetics: Using HF Hub model")
|
63 |
-
return str(hf_hub_download(
|
64 |
-
token = os.environ.get("HFS_TOKEN") or True,
|
65 |
-
repo_id = HFREPO,
|
66 |
-
filename = fname,
|
67 |
-
# subfolder = fname.split('-')[1],
|
68 |
-
))
|
69 |
-
|
70 |
-
article = """\
|
71 |
-
# About
|
72 |
-
|
73 |
-
This is the live demo for the CityAesthetics class of predictors.
|
74 |
-
|
75 |
-
For more information, you can check out the [Huggingface Hub](https://huggingface.co/city96/CityAesthetics) or [GitHub page](https://github.com/city96/CityAesthetics).
|
76 |
-
|
77 |
-
## CityAesthetics-Anime
|
78 |
-
|
79 |
-
This flavor is optimized for scoring anime images with at least one subject present.
|
80 |
-
|
81 |
-
### Intentional biases:
|
82 |
-
|
83 |
-
- Completely negative towards real life photos (ideal score of 0%)
|
84 |
-
- Strongly Negative towards text (subtitles, memes, etc) and manga panels
|
85 |
-
- Fairly negative towards 3D and to some extent 2.5D images
|
86 |
-
- Negative towards western cartoons and stylized images (chibi, parody)
|
87 |
-
|
88 |
-
### Expected output scores:
|
89 |
-
|
90 |
-
- Non-anime images should always score below 20%
|
91 |
-
- Sketches/rough lineart/oekaki get around 20-40%
|
92 |
-
- Flat shading/TV anime gets around 40-50%
|
93 |
-
- Above 50% is mostly scored based on my personal style preferences
|
94 |
-
|
95 |
-
### Issues:
|
96 |
-
|
97 |
-
- Tends to filter male characters.
|
98 |
-
- Requires at least 1 subject, won't work for scenery/landscapes.
|
99 |
-
- Noticeable positive bias towards anime characters with animal ears.
|
100 |
-
- Hit-or-miss with AI generated images due to style/quality not being correlated.
|
101 |
-
"""
|
102 |
-
|
103 |
-
pipeline = CityAestheticsPipeline([get_model_path(x) for x in MODELS])
|
104 |
-
gr.Interface(
|
105 |
-
fn = pipeline,
|
106 |
-
title = "CityAesthetics demo",
|
107 |
-
article = article,
|
108 |
-
inputs = gr.Image(label="Input image", type="pil"),
|
109 |
-
outputs = gr.Label(label="Model prediction", show_label=False),
|
110 |
-
examples = "./examples",
|
111 |
-
allow_flagging = "never",
|
112 |
-
analytics_enabled = False,
|
113 |
-
).launch()
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from inference import CityAestheticsMultiModelPipeline, get_model_path
|
5 |
+
|
6 |
+
TOKEN = os.environ.get("HFS_TOKEN")
|
7 |
+
HFREPO = "City96/CityAesthetics"
|
8 |
+
MODELS = [
|
9 |
+
"CityAesthetics-Anime-v1.8",
|
10 |
+
]
|
11 |
+
article = """\
|
12 |
+
# About
|
13 |
+
|
14 |
+
This is the live demo for the CityAesthetics class of predictors.
|
15 |
+
|
16 |
+
For more information, you can check out the [Huggingface Hub](https://huggingface.co/city96/CityAesthetics) or [GitHub page](https://github.com/city96/CityClassifiers).
|
17 |
+
|
18 |
+
## CityAesthetics-Anime
|
19 |
+
|
20 |
+
This flavor is optimized for scoring anime images with at least one subject present.
|
21 |
+
|
22 |
+
### Intentional biases:
|
23 |
+
|
24 |
+
- Completely negative towards real life photos (ideal score of 0%)
|
25 |
+
- Strongly Negative towards text (subtitles, memes, etc) and manga panels
|
26 |
+
- Fairly negative towards 3D and to some extent 2.5D images
|
27 |
+
- Negative towards western cartoons and stylized images (chibi, parody)
|
28 |
+
|
29 |
+
### Expected output scores:
|
30 |
+
|
31 |
+
- Non-anime images should always score below 20%
|
32 |
+
- Sketches/rough lineart/oekaki get around 20-40%
|
33 |
+
- Flat shading/TV anime gets around 40-50%
|
34 |
+
- Above 50% is mostly scored based on my personal style preferences
|
35 |
+
|
36 |
+
### Issues:
|
37 |
+
|
38 |
+
- Tends to filter male characters.
|
39 |
+
- Requires at least 1 subject, won't work for scenery/landscapes.
|
40 |
+
- Noticeable positive bias towards anime characters with animal ears.
|
41 |
+
- Hit-or-miss with AI generated images due to style/quality not being correlated.
|
42 |
+
"""
|
43 |
+
|
44 |
+
pipeline = CityAestheticsMultiModelPipeline(
|
45 |
+
[get_model_path(x, HFREPO, TOKEN) for x in MODELS],
|
46 |
+
)
|
47 |
+
gr.Interface(
|
48 |
+
fn = pipeline,
|
49 |
+
title = "CityAesthetics demo",
|
50 |
+
article = article,
|
51 |
+
inputs = gr.Image(label="Input image", type="pil"),
|
52 |
+
outputs = gr.Label(label="Model prediction", show_label=False),
|
53 |
+
examples = "./examples" if os.path.isdir("./examples") else None,
|
54 |
+
allow_flagging = "never",
|
55 |
+
analytics_enabled = False,
|
56 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from safetensors.torch import load_file
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
6 |
+
|
7 |
+
from model import AestheticPredictorModel
|
8 |
+
|
9 |
+
class CityAestheticsPipeline:
|
10 |
+
"""
|
11 |
+
Demo model pipeline for [image=>score] prediction
|
12 |
+
Accepts a single model path on initialization.
|
13 |
+
Resulting object can be called directly with a PIL image as the input
|
14 |
+
Returns a single float value with the predicted score [0.0;1.0].
|
15 |
+
"""
|
16 |
+
clip_ver = "openai/clip-vit-large-patch14"
|
17 |
+
def __init__(self, model_path, device="cpu", clip_dtype=torch.float32):
|
18 |
+
self.device = device
|
19 |
+
self.clip_dtype = clip_dtype
|
20 |
+
self._init_clip()
|
21 |
+
self.model = self._load_model(model_path)
|
22 |
+
print("CityAesthetics: Pipeline init ok") # debug
|
23 |
+
|
24 |
+
def __call__(self, raw):
|
25 |
+
emb = self.get_clip_emb(raw)
|
26 |
+
return self.get_model_pred(self.model, emb)
|
27 |
+
|
28 |
+
def get_model_pred(self, model, emb):
|
29 |
+
with torch.no_grad():
|
30 |
+
pred = model(emb)
|
31 |
+
return float(pred.detach().cpu().squeeze(0))
|
32 |
+
|
33 |
+
def get_clip_emb(self, raw):
|
34 |
+
img = self.proc(
|
35 |
+
images = raw,
|
36 |
+
return_tensors = "pt"
|
37 |
+
)["pixel_values"].to(self.clip_dtype).to(self.device)
|
38 |
+
with torch.no_grad():
|
39 |
+
emb = self.clip(pixel_values=img)
|
40 |
+
return emb["image_embeds"].detach().to(torch.float32)
|
41 |
+
|
42 |
+
def _init_clip(self):
|
43 |
+
self.proc = CLIPImageProcessor.from_pretrained(self.clip_ver)
|
44 |
+
self.clip = CLIPVisionModelWithProjection.from_pretrained(
|
45 |
+
self.clip_ver,
|
46 |
+
device_map = self.device,
|
47 |
+
torch_dtype = self.clip_dtype,
|
48 |
+
)
|
49 |
+
|
50 |
+
def _load_model(self, path):
|
51 |
+
sd = load_file(path)
|
52 |
+
assert tuple(sd["up.0.weight"].shape) == (1024, 768) # only allow CLIP ver
|
53 |
+
model = AestheticPredictorModel()
|
54 |
+
model.eval()
|
55 |
+
model.load_state_dict(sd)
|
56 |
+
model.to(self.device)
|
57 |
+
return model
|
58 |
+
|
59 |
+
class CityAestheticsMultiModelPipeline(CityAestheticsPipeline):
|
60 |
+
"""
|
61 |
+
Demo multi-model pipeline for [image=>score] prediction
|
62 |
+
Accepts a list of model paths on initialization.
|
63 |
+
Resulting object can be called directly with a PIL image as the input.
|
64 |
+
Returns a dict with the model name as key and the score [0.0;1.0] as a value.
|
65 |
+
"""
|
66 |
+
def __init__(self, model_paths, device="cpu", clip_dtype=torch.float32):
|
67 |
+
self.device = device
|
68 |
+
self.clip_dtype = clip_dtype
|
69 |
+
self._init_clip()
|
70 |
+
self.models = {}
|
71 |
+
for path in model_paths:
|
72 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
73 |
+
self.models[name] = self._load_model(path)
|
74 |
+
print("CityAesthetics: Pipeline init ok") # debug
|
75 |
+
|
76 |
+
def __call__(self, raw):
|
77 |
+
emb = self.get_clip_emb(raw)
|
78 |
+
out = {}
|
79 |
+
for name, model in self.models.items():
|
80 |
+
pred = model(emb)
|
81 |
+
out[name] = self.get_model_pred(model, emb)
|
82 |
+
return out
|
83 |
+
|
84 |
+
def get_model_path(name, repo, token=True):
|
85 |
+
"""
|
86 |
+
Returns local model path or falls back to HF hub if required.
|
87 |
+
"""
|
88 |
+
fname = f"{name}.safetensors"
|
89 |
+
|
90 |
+
# local path: [models/AesPred-Anime-v1.8.safetensors]
|
91 |
+
path = os.path.join(os.path.dirname(os.path.realpath(__file__)),"models")
|
92 |
+
if os.path.isfile(os.path.join(path, fname)):
|
93 |
+
print("CityAesthetics: Using local model")
|
94 |
+
return os.path.join(path, fname)
|
95 |
+
|
96 |
+
# huggingface hub fallback
|
97 |
+
print("CityAesthetics: Using HF Hub model")
|
98 |
+
return str(hf_hub_download(
|
99 |
+
token = token,
|
100 |
+
repo_id = repo,
|
101 |
+
filename = fname,
|
102 |
+
))
|
model.py
CHANGED
@@ -1,44 +1,44 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
class ResBlock(nn.Module):
|
5 |
-
"""
|
6 |
-
def __init__(self, ch):
|
7 |
-
super().__init__()
|
8 |
-
self.join = nn.ReLU()
|
9 |
-
self.long = nn.Sequential(
|
10 |
-
nn.Linear(ch, ch),
|
11 |
-
nn.LeakyReLU(0.1),
|
12 |
-
nn.Linear(ch, ch),
|
13 |
-
nn.LeakyReLU(0.1),
|
14 |
-
nn.Linear(ch, ch),
|
15 |
-
)
|
16 |
-
def forward(self, x):
|
17 |
-
return self.join(self.long(x) + x)
|
18 |
-
|
19 |
-
class AestheticPredictorModel(nn.Module):
|
20 |
-
"""
|
21 |
-
Main predictor class. Original:
|
22 |
-
https://github.com/city96/
|
23 |
-
"""
|
24 |
-
def __init__(self, features=768, hidden=1024):
|
25 |
-
super().__init__()
|
26 |
-
self.features = features
|
27 |
-
self.hidden = hidden
|
28 |
-
self.up = nn.Sequential(
|
29 |
-
nn.Linear(self.features, self.hidden),
|
30 |
-
ResBlock(ch=self.hidden),
|
31 |
-
)
|
32 |
-
self.down = nn.Sequential(
|
33 |
-
nn.Linear(self.hidden, 128),
|
34 |
-
nn.Linear(128, 64),
|
35 |
-
nn.Dropout(0.1),
|
36 |
-
nn.LeakyReLU(),
|
37 |
-
nn.Linear(64, 32),
|
38 |
-
nn.Linear(32, 1),
|
39 |
-
nn.Tanh(),
|
40 |
-
)
|
41 |
-
def forward(self, x):
|
42 |
-
y = self.up(x)
|
43 |
-
z = self.down(y)
|
44 |
-
return (z+1.0)/2.0
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class ResBlock(nn.Module):
|
5 |
+
"""Linear block with residuals"""
|
6 |
+
def __init__(self, ch):
|
7 |
+
super().__init__()
|
8 |
+
self.join = nn.ReLU()
|
9 |
+
self.long = nn.Sequential(
|
10 |
+
nn.Linear(ch, ch),
|
11 |
+
nn.LeakyReLU(0.1),
|
12 |
+
nn.Linear(ch, ch),
|
13 |
+
nn.LeakyReLU(0.1),
|
14 |
+
nn.Linear(ch, ch),
|
15 |
+
)
|
16 |
+
def forward(self, x):
|
17 |
+
return self.join(self.long(x) + x)
|
18 |
+
|
19 |
+
class AestheticPredictorModel(nn.Module):
|
20 |
+
"""
|
21 |
+
Main predictor class. Original:
|
22 |
+
https://github.com/city96/CityClassifiers/blob/main/model.py
|
23 |
+
"""
|
24 |
+
def __init__(self, features=768, hidden=1024):
|
25 |
+
super().__init__()
|
26 |
+
self.features = features
|
27 |
+
self.hidden = hidden
|
28 |
+
self.up = nn.Sequential(
|
29 |
+
nn.Linear(self.features, self.hidden),
|
30 |
+
ResBlock(ch=self.hidden),
|
31 |
+
)
|
32 |
+
self.down = nn.Sequential(
|
33 |
+
nn.Linear(self.hidden, 128),
|
34 |
+
nn.Linear(128, 64),
|
35 |
+
nn.Dropout(0.1),
|
36 |
+
nn.LeakyReLU(),
|
37 |
+
nn.Linear(64, 32),
|
38 |
+
nn.Linear(32, 1),
|
39 |
+
nn.Tanh(),
|
40 |
+
)
|
41 |
+
def forward(self, x):
|
42 |
+
y = self.up(x)
|
43 |
+
z = self.down(y)
|
44 |
+
return (z+1.0)/2.0
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
torch==2.1.0
|
2 |
-
safetensors==0.4.0
|
3 |
-
transformers==4.35.0
|
|
|
1 |
+
torch==2.1.0
|
2 |
+
safetensors==0.4.0
|
3 |
+
transformers==4.35.0
|