Spaces:
Runtime error
Runtime error
City
commited on
Commit
·
218e10f
1
Parent(s):
a5ed63a
Initial version
Browse files- README.md +3 -2
- app.py +113 -0
- examples/eru1.webp +0 -0
- examples/eru2.webp +0 -0
- examples/pass1.webp +0 -0
- examples/pass2.webp +0 -0
- model.py +44 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
---
|
2 |
title: CityAesthetics Demo
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
1 |
---
|
2 |
title: CityAesthetics Demo
|
3 |
+
emoji: 🏙️
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
9 |
+
models: [city96/CityAesthetics]
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
12 |
---
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
|
8 |
+
from model import AestheticPredictorModel
|
9 |
+
|
10 |
+
HFREPO = "City96/CityAesthetics"
|
11 |
+
MODELS = [
|
12 |
+
"CityAesthetics-Anime-v1.8",
|
13 |
+
]
|
14 |
+
|
15 |
+
class CityAestheticsPipeline:
|
16 |
+
"""
|
17 |
+
Demo pipeline for [image=>score] prediction
|
18 |
+
Accepts a list of model paths on initialization.
|
19 |
+
Resulting object can be called directly with a PIL image as the input.
|
20 |
+
Returns a dict with the model name as key and the score [0.0;1.0] as a value.
|
21 |
+
"""
|
22 |
+
def __init__(self, model_paths):
|
23 |
+
self.models = {}
|
24 |
+
for path in model_paths:
|
25 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
26 |
+
self.models[name] = self.load_model(path)
|
27 |
+
|
28 |
+
clip_ver = "openai/clip-vit-large-patch14"
|
29 |
+
self.proc = CLIPImageProcessor.from_pretrained(clip_ver)
|
30 |
+
self.clip = CLIPVisionModelWithProjection.from_pretrained(clip_ver)
|
31 |
+
print("CityAesthetics: Pipeline init ok") # debug
|
32 |
+
|
33 |
+
def load_model(self, path):
|
34 |
+
sd = load_file(path)
|
35 |
+
assert tuple(sd["up.0.weight"].shape) == (1024, 768) # only allow CLIP ver
|
36 |
+
model = AestheticPredictorModel()
|
37 |
+
model.load_state_dict(sd)
|
38 |
+
model.eval()
|
39 |
+
return model
|
40 |
+
|
41 |
+
def __call__(self, raw):
|
42 |
+
img = self.proc(images=raw, return_tensors="pt")
|
43 |
+
with torch.no_grad():
|
44 |
+
emb = self.clip(pixel_values=img["pixel_values"])
|
45 |
+
emb = emb["image_embeds"].detach().cpu()
|
46 |
+
out = {}
|
47 |
+
for name, model in self.models.items():
|
48 |
+
pred = model(emb)
|
49 |
+
out[name] = float(pred.squeeze(0))
|
50 |
+
return out
|
51 |
+
|
52 |
+
def get_model_path(name):
|
53 |
+
fname = f"{name}.safetensors"
|
54 |
+
|
55 |
+
# local path: [models/AesPred-Anime-v1.8.safetensors]
|
56 |
+
path = os.path.join(os.path.dirname(os.path.realpath(__file__)),"models")
|
57 |
+
if os.path.isfile(os.path.join(path, fname)):
|
58 |
+
print("CityAesthetics: Using local model")
|
59 |
+
return os.path.join(path, fname)
|
60 |
+
|
61 |
+
# huggingface hub fallback
|
62 |
+
print("CityAesthetics: Using HF Hub model")
|
63 |
+
return str(hf_hub_download(
|
64 |
+
token = os.environ.get("HFS_TOKEN") or True,
|
65 |
+
repo_id = HFREPO,
|
66 |
+
filename = fname,
|
67 |
+
# subfolder = fname.split('-')[1],
|
68 |
+
))
|
69 |
+
|
70 |
+
article = """\
|
71 |
+
# About
|
72 |
+
|
73 |
+
This is the live demo for the CityAesthetics class of predictors.
|
74 |
+
|
75 |
+
For more information, you can check out the [Huggingface Hub](https://huggingface.co/city96/CityAesthetics) or [GitHub page](https://github.com/city96/CityAesthetics).
|
76 |
+
|
77 |
+
## CityAesthetics-Anime
|
78 |
+
|
79 |
+
This flavor is optimized for scoring anime images with at least one subject present.
|
80 |
+
|
81 |
+
### Intentional biases:
|
82 |
+
|
83 |
+
- Completely negative towards real life photos (ideal score of 0%)
|
84 |
+
- Strongly Negative towards text (subtitles, memes, etc) and manga panels
|
85 |
+
- Fairly negative towards 3D and to some extent 2.5D images
|
86 |
+
- Negative towards western cartoons and stylized images (chibi, parody)
|
87 |
+
|
88 |
+
### Expected output scores:
|
89 |
+
|
90 |
+
- Non-anime images should always score below 20%
|
91 |
+
- Sketches/rough lineart/oekaki get around 20-40%
|
92 |
+
- Flat shading/TV anime gets around 40-50%
|
93 |
+
- Above 50% is mostly scored based on my personal style preferences
|
94 |
+
|
95 |
+
### Issues:
|
96 |
+
|
97 |
+
- Tends to filter male characters.
|
98 |
+
- Requires at least 1 subject, won't work for scenery/landscapes.
|
99 |
+
- Noticeable positive bias towards anime characters with animal ears.
|
100 |
+
- Hit-or-miss with AI generated images due to style/quality not being correlated.
|
101 |
+
"""
|
102 |
+
|
103 |
+
pipeline = CityAestheticsPipeline([get_model_path(x) for x in MODELS])
|
104 |
+
gr.Interface(
|
105 |
+
fn = pipeline,
|
106 |
+
title = "CityAesthetics demo",
|
107 |
+
article = article,
|
108 |
+
inputs = gr.Image(label="Input image", type="pil"),
|
109 |
+
outputs = gr.Label(label="Model prediction", show_label=False),
|
110 |
+
examples = "./examples",
|
111 |
+
allow_flagging = "never",
|
112 |
+
analytics_enabled = False,
|
113 |
+
).launch()
|
examples/eru1.webp
ADDED
examples/eru2.webp
ADDED
examples/pass1.webp
ADDED
examples/pass2.webp
ADDED
model.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class ResBlock(nn.Module):
|
5 |
+
"""Block with residuals"""
|
6 |
+
def __init__(self, ch):
|
7 |
+
super().__init__()
|
8 |
+
self.join = nn.ReLU()
|
9 |
+
self.long = nn.Sequential(
|
10 |
+
nn.Linear(ch, ch),
|
11 |
+
nn.LeakyReLU(0.1),
|
12 |
+
nn.Linear(ch, ch),
|
13 |
+
nn.LeakyReLU(0.1),
|
14 |
+
nn.Linear(ch, ch),
|
15 |
+
)
|
16 |
+
def forward(self, x):
|
17 |
+
return self.join(self.long(x) + x)
|
18 |
+
|
19 |
+
class AestheticPredictorModel(nn.Module):
|
20 |
+
"""
|
21 |
+
Main predictor class. Original:
|
22 |
+
https://github.com/city96/CityAesthetics/blob/main/model.py
|
23 |
+
"""
|
24 |
+
def __init__(self, features=768, hidden=1024):
|
25 |
+
super().__init__()
|
26 |
+
self.features = features
|
27 |
+
self.hidden = hidden
|
28 |
+
self.up = nn.Sequential(
|
29 |
+
nn.Linear(self.features, self.hidden),
|
30 |
+
ResBlock(ch=self.hidden),
|
31 |
+
)
|
32 |
+
self.down = nn.Sequential(
|
33 |
+
nn.Linear(self.hidden, 128),
|
34 |
+
nn.Linear(128, 64),
|
35 |
+
nn.Dropout(0.1),
|
36 |
+
nn.LeakyReLU(),
|
37 |
+
nn.Linear(64, 32),
|
38 |
+
nn.Linear(32, 1),
|
39 |
+
nn.Tanh(),
|
40 |
+
)
|
41 |
+
def forward(self, x):
|
42 |
+
y = self.up(x)
|
43 |
+
z = self.down(y)
|
44 |
+
return (z+1.0)/2.0
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch=2.1.0
|
2 |
+
safetensors=0.4.0
|
3 |
+
transformers=4.35.0
|