Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
3 |
+
from deep_translator import GoogleTranslator
|
4 |
+
import torch
|
5 |
+
import string
|
6 |
+
|
7 |
+
def preprocess_data(text: str) -> str:
|
8 |
+
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
|
9 |
+
|
10 |
+
SARCASTIC_MODEL_PATH = "helinivan/english-sarcasm-detector"
|
11 |
+
SENTIMENT_MODEL_PATH = "lxyuan/distilbert-base-multilingual-cased-sentiments-student"
|
12 |
+
|
13 |
+
sarcasm_tokenizer = AutoTokenizer.from_pretrained(SARCASTIC_MODEL_PATH)
|
14 |
+
sarcasm_model = AutoModelForSequenceClassification.from_pretrained(SARCASTIC_MODEL_PATH)
|
15 |
+
sentiment_analyzer = pipeline("text-classification", model=SENTIMENT_MODEL_PATH, return_all_scores=True)
|
16 |
+
|
17 |
+
def analyze_text(user_input):
|
18 |
+
|
19 |
+
translated_text = GoogleTranslator(source="auto", target="en").translate(user_input)
|
20 |
+
preprocessed_text = preprocess_data(translated_text)
|
21 |
+
tokenized_text = sarcasm_tokenizer([preprocessed_text], padding=True, truncation=True, max_length=256, return_tensors="pt")
|
22 |
+
with torch.no_grad():
|
23 |
+
output = sarcasm_model(**tokenized_text)
|
24 |
+
probs = torch.nn.functional.softmax(output.logits, dim=-1).tolist()[0]
|
25 |
+
sarcasm_confidence = max(probs)
|
26 |
+
is_sarcastic = probs.index(sarcasm_confidence)
|
27 |
+
if is_sarcastic:
|
28 |
+
return f"Sarcastic"
|
29 |
+
else:
|
30 |
+
sentiment_scores = sentiment_analyzer(translated_text)[0]
|
31 |
+
sentiment_result = max(sentiment_scores, key=lambda x: x["score"])
|
32 |
+
return f"{sentiment_result['label'].capitalize()}"
|
33 |
+
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=analyze_text,
|
36 |
+
inputs=gr.Textbox(label="Enter your text (Tamil)"),
|
37 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
38 |
+
description="Enter text in TAMIL",
|
39 |
+
examples=[
|
40 |
+
['ஹாய் மாலினி, நான் இதை சொல்லியே ஆகணும், நீ அவ்ளோ அழகு, இங்க உன்னைவிட ஒரு அழகா யாரும் பாத்துருக்க மாட்டாங்க'],
|
41 |
+
['இது நல்ல இல்ல'],
|
42 |
+
['நம்ம ஜெயிச்சிட்டோம் மாறா! ']
|
43 |
+
],
|
44 |
+
)
|
45 |
+
|
46 |
+
iface.launch(share=True)
|