cipherunhsiv's picture
Create app.py
62a284d verified
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from deep_translator import GoogleTranslator
import torch
import string
def preprocess_data(text: str) -> str:
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
SARCASTIC_MODEL_PATH = "helinivan/english-sarcasm-detector"
SENTIMENT_MODEL_PATH = "lxyuan/distilbert-base-multilingual-cased-sentiments-student"
sarcasm_tokenizer = AutoTokenizer.from_pretrained(SARCASTIC_MODEL_PATH)
sarcasm_model = AutoModelForSequenceClassification.from_pretrained(SARCASTIC_MODEL_PATH)
sentiment_analyzer = pipeline("text-classification", model=SENTIMENT_MODEL_PATH, return_all_scores=True)
def analyze_text(user_input):
translated_text = GoogleTranslator(source="auto", target="en").translate(user_input)
preprocessed_text = preprocess_data(translated_text)
tokenized_text = sarcasm_tokenizer([preprocessed_text], padding=True, truncation=True, max_length=256, return_tensors="pt")
with torch.no_grad():
output = sarcasm_model(**tokenized_text)
probs = torch.nn.functional.softmax(output.logits, dim=-1).tolist()[0]
sarcasm_confidence = max(probs)
is_sarcastic = probs.index(sarcasm_confidence)
if is_sarcastic:
return f"Sarcastic"
else:
sentiment_scores = sentiment_analyzer(translated_text)[0]
sentiment_result = max(sentiment_scores, key=lambda x: x["score"])
return f"{sentiment_result['label'].capitalize()}"
iface = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(label="Enter your text (Tamil)"),
outputs=gr.Textbox(label="Analysis Result"),
description="Enter text in TAMIL",
examples=[
['ஹாய் மாலினி, நான் இதை சொல்லியே ஆகணும், நீ அவ்ளோ அழகு, இங்க உன்னைவிட ஒரு அழகா யாரும் பாத்துருக்க மாட்டாங்க'],
['இது நல்ல இல்ல'],
['நம்ம ஜெயிச்சிட்டோம் மாறா! ']
],
)
iface.launch(share=True)