|
import gradio as gr |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline |
|
from deep_translator import GoogleTranslator |
|
import torch |
|
import string |
|
|
|
def preprocess_data(text: str) -> str: |
|
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip() |
|
|
|
SARCASTIC_MODEL_PATH = "helinivan/english-sarcasm-detector" |
|
SENTIMENT_MODEL_PATH = "lxyuan/distilbert-base-multilingual-cased-sentiments-student" |
|
|
|
sarcasm_tokenizer = AutoTokenizer.from_pretrained(SARCASTIC_MODEL_PATH) |
|
sarcasm_model = AutoModelForSequenceClassification.from_pretrained(SARCASTIC_MODEL_PATH) |
|
sentiment_analyzer = pipeline("text-classification", model=SENTIMENT_MODEL_PATH, return_all_scores=True) |
|
|
|
def analyze_text(user_input): |
|
|
|
translated_text = GoogleTranslator(source="auto", target="en").translate(user_input) |
|
preprocessed_text = preprocess_data(translated_text) |
|
tokenized_text = sarcasm_tokenizer([preprocessed_text], padding=True, truncation=True, max_length=256, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = sarcasm_model(**tokenized_text) |
|
probs = torch.nn.functional.softmax(output.logits, dim=-1).tolist()[0] |
|
sarcasm_confidence = max(probs) |
|
is_sarcastic = probs.index(sarcasm_confidence) |
|
if is_sarcastic: |
|
return f"Sarcastic" |
|
else: |
|
sentiment_scores = sentiment_analyzer(translated_text)[0] |
|
sentiment_result = max(sentiment_scores, key=lambda x: x["score"]) |
|
return f"{sentiment_result['label'].capitalize()}" |
|
|
|
iface = gr.Interface( |
|
fn=analyze_text, |
|
inputs=gr.Textbox(label="Enter your text (Tamil)"), |
|
outputs=gr.Textbox(label="Analysis Result"), |
|
description="Enter text in TAMIL", |
|
examples=[ |
|
['ஹாய் மாலினி, நான் இதை சொல்லியே ஆகணும், நீ அவ்ளோ அழகு, இங்க உன்னைவிட ஒரு அழகா யாரும் பாத்துருக்க மாட்டாங்க'], |
|
['இது நல்ல இல்ல'], |
|
['நம்ம ஜெயிச்சிட்டோம் மாறா! '] |
|
], |
|
) |
|
|
|
iface.launch(share=True) |
|
|